
Understanding OghmaNano

Roderick C. I. MacKenzie



Please do not cite this manual. Please see the section 1.6 on how to cite the model in your
work.

Front cover: A picture of a thermal power station in Ratcliffe-on-Soar Nottinghamshire
taken on a cold January afternoon in 2017. Most of the emissions you see in the image is water
from the cooling towers however the gasses rising form the tall thin chimney on the left hand
side of the image are the products of burning hydrocarbons which previously buried in the
ground for about 300 million years.

https://en.wikipedia.org/wiki/Ratcliffe-on-Soar_Power_Station


This document is Copyright Roderick C. I. MacKenzie and compiled on May 15, 2023. If
you have questions or comments please contact roderick.mackenzie@oghma-nano.com.



Contents

1 Introduction
1.1 What is OghmaNano? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Why OghmaNano? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 About this book/manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 What is the history of OghmaNano? . . . . . . . . . . . . . . . . . . . . . . . .
1.5 What is the roadmap for OghmaNano? . . . . . . . . . . . . . . . . . . . . . . .
1.6 Using OghmaNano in industrial/academic work . . . . . . . . . . . . . . . . . .
1.7 Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Installing OghmaNano
2.1 Windows (if you have admin rights) . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Windows (No admin rights) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Getting started
3.1 Simulating a JV curve of a simple solar cell . . . . . . . . . . . . . . . . . . . . .

3.1.1 Making your first simulation . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 The output from your first simulation . . . . . . . . . . . . . . . . . . . .
3.1.3 Editing device layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.4 How do solar cells absorb light? . . . . . . . . . . . . . . . . . . . . . . .
3.1.5 Light inside solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.6 Parasitic elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.7 Solar cells in the dark . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.8 The contact editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.9 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Simulation modes and simulation editors
4.1 JV editor (Steady state simulation editor) . . . . . . . . . . . . . . . . . . . . .

4.1.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.3 sim info.dat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.4 Steady state electrical simulation . . . . . . . . . . . . . . . . . . . . . .

4.2 Time domain editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Frequency domain editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Suns-Voc editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5 Suns-Jsc editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6 Quantum efficiency editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



CONTENTS

4.6.1 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Scanning probe microscopy editor . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8 Electrical equilibrium editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9 Steady state photoluminencense editor . . . . . . . . . . . . . . . . . . . . . . .
4.10 Charge extraction editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.10.1 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11 Capacitance voltage editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.11.1 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2D Simulations - OFETs
5.0.1 The anatomy of a 2D simulation . . . . . . . . . . . . . . . . . . . . . . .
5.0.2 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.0.3 Running a 2D simulation . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.0.4 Meshing in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.0.5 Solving the drift diffusion equations over the entire device . . . . . . . .

6 2D simulation of bulk-heterojunctions

7 Meshing
7.1 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Editing the electrical mesh/layers . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Should I be simulating in 1D, 2D or 3D? . . . . . . . . . . . . . . . . . . . . . .

8 Theory of drift diffusion modelling
8.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Electrostatic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3 Free charge carrier statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4 Carrier trapping and Shockley-Read-Hall recombination . . . . . . . . . . . . . .

8.4.1 Equilibrium Shockley-Read-Hall recombination . . . . . . . . . . . . . .
8.4.2 Non-equilibrium carrier trapping and recombination using Shockley-Read-

Hall trap states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4.3 Free-to-free carrier recombination . . . . . . . . . . . . . . . . . . . . . .
8.4.4 Auger recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.5 Charge carrier transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6 Perovskite mobile ion solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.7 Semiconductor interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.7.1 Tunnelling through heterojunctions . . . . . . . . . . . . . . . . . . . . .
8.7.2 Doping on the interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.8 Configuring the electrical solver . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.8.1 Solver stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.8.2 Simulating disordered devices without traps . . . . . . . . . . . . . . . .

8.9 Calculating the built in potential . . . . . . . . . . . . . . . . . . . . . . . . . .
8.9.1 Average free carrier mobility . . . . . . . . . . . . . . . . . . . . . . . . .

8.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.10.1 Lattice thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.10.2 Energy balance - hydrodynamic transport model . . . . . . . . . . . . . .

9 Optical models
9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.1.1 Lattice thermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.2 Energy balance - hydrodynamic transport model . . . . . . . . . . . . . .



CONTENTS

9.1.3 Ray tracing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Simple circuit simulations
10.0.1 JV, IS, CV and other simulation modes . . . . . . . . . . . . . . . . . . .
10.0.2 Using the fitting/scan tools with circuit models . . . . . . . . . . . . . .

11 Large area device simulation
11.1 Designing contacts for large area devices . . . . . . . . . . . . . . . . . . . . . .
11.2 Simulating large area solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Modelling excitons/geminate recombination - organics only
12.1 Why you should not model excitons . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Modelling excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Modeling excitions in a device . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4 Modeling excitions in a unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 The oghma file format
13.1 the .oghma simulation file format . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 Qwerks of the OghmaNano json format . . . . . . . . . . . . . . . . . . . . . . .
13.3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.4 Forwards/backwards compatability of the file format . . . . . . . . . . . . . . .

14 Databases
14.1 Materials database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 Adding new materials - the hard way . . . . . . . . . . . . . . . . . . . . . . . .
14.3 Adding new materials - the easy way . . . . . . . . . . . . . . . . . . . . . . . .
14.4 Emission database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5 Shape database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.5.1 The shape file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.6 Filters database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.7 Backups of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 Fitting experimental data
15.1 Key tips and tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2 The main fitting window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.3 Fit variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.4 How the fitting process works . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.5 Fitting without the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 Automation and Scripting
16.1 The parameter scan window . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16.1.1 Changing one material parameter . . . . . . . . . . . . . . . . . . . . . .
16.1.2 Duplicating parameters - changing the thickness of the active layer . . .
16.1.3 Setting constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.4 The equivalent of loops . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.5 Limitations of the scan window . . . . . . . . . . . . . . . . . . . . . . .

16.2 Multiparameter device optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.2.1 Using the multi parameter optimizer . . . . . . . . . . . . . . . . . . . .

16.3 Python/MATLAB scripting of OghmaNano . . . . . . . . . . . . . . . . . . . .
16.3.1 Python scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.3.2 MATLAB scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



CONTENTS

17 Output files
17.1 Snapshots directory - dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.2 Trap map directory - dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.3 Optical snapshots - dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.4 Cache - dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.5 Equilibrium directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.6 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17.6.1 .dat files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.6.2 .csv files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.6.3 Binary .csv files - files which are not human readable . . . . . . . . . . .

18 Troubleshooting
18.1 Windows gives warms me the software is unsigned . . . . . . . . . . . . . . . . .
18.2 Why don’t I get a 3D view of the device . . . . . . . . . . . . . . . . . . . . . .

19 FAQ
19.1 Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19.1.1 Should I trust the results of OghmaNano? . . . . . . . . . . . . . . . . .
19.1.2 Can I use the model to simulate my exotic* material system/contacts? .

19.2 Excited states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Legal
20.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.2 Copyright of the manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.3 Data privacy statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Chapter 1

Introduction

1.1 What is OghmaNano?

OghmaNano officially stands for Organic and hybrid Material Nano Simulation tool. Oghma
is also the name of the Gaelic God who’s appearance is described as ”sun-faced” or ”shin-
ing/radiant”, he is creditied with developing Ogham, the script in which Irish Gaelic was first
written. The creators of OghmaNano spent a lot of time making sure it can describe the light
and optical radiation correctly thus the name seems like a good fit. How you remember the
name is up to you.

OghmaNano was originally developed to be a general purpose model for simulating photo-
voltaic devices, including organic and perovskite cells. However, since its initial development
the model has expanded to simulate many other classes of optoelectronic devices including, Or-
ganic Light Emitting Diodes (OLEDs), Organic Field Effect Transistors (OFETs), large area
printed devices, optical filters, photonic crystals and many more. In general OghmaNano can
simulate any opto-electronic-device where electrons, photons (and also heat - phonons) interact.
The model has been downloaded by thousands of people across the globe (see figure 1.1) and is
used in many top universities and companies. Figure 1.2 shows some of the classes of devices
OghmaNano can simulate. Key features of OghmaNano are listed below:

� Electrical models:

– 1/2D electrical drift-diffusion solver.
– Dynamic SRH traps needed for simulating disordered materials.
– Simple equivalent circuit model.
– Complex 3D circuit model for complex large area devices.
– Arbitrary user defined densities of trap states.
– Thermal model linked to the electrical models.
– Time domain, frequency domain and steady state solvers.

� Optical models:

– Transfer matrix model for light
– FDTD models
– Ray tracing model
– 1/2D optical mode solvers for waveguide structures.
– Arbitrary light sources/filters.

� Excited states/mobile ion:

– 1/2/3D Exciton solver.
– Excited singlet/triplet state solver.
– Mobile ions, doping and tunneling through interfaces.

https://en.wikipedia.org/wiki/Ogma
https://en.wikipedia.org/wiki/Ogham


CHAPTER 1. INTRODUCTION

� Other/databases:

– Comprehensive materials databases.

– Ability to convert arbitrary shapes to 3D objects.

– Comprehensive 3D shape database.

1.2 Why OghmaNano?

By burning fossil fuels we are releasing ∼ 33.3
gigatonnes of CO2 per year [1] and thus hu-
manity is steadily changing the composition of
Earth’s atmosphere. Since 1960, CO2 in the at-
mosphere has risen by around 30% this in turn
is increasing average global temperatures[2] and
making our home planet Earth, a more difficult
place to live on. We therefore have two choices,
either cut emissions or face an existential crisis.
Thin film devices such as solar cells and OLEDs
offer a viable way to reduce our CO2 emissions,
either by providing low carbon electricity, or
providing an efficient way to use the energy once
generated.

Figure 1.1: A map of locations where Ogh-
maNano has been downloaded.

It is therefore important that technologies based on thin film devices continue to be devel-
oped and succeed. By developing and releasing OghmaNano, I hope, I am enabling scientists
throughout the world to understand these devices a little bit better, which I hope will contribute
in a very small way to solving our climate crisis.

Solar cells and OLEDs happen to come from a class of devices called diodes. This class of
devices has many uses including optical sensors, medical sensors, switches, rectifiers. Thus as
a pleasant side effect of OghmaNano the development of these devices is also being helped.

1.3 About this book/manual

This book is intended to be the definitive guide to simulating devices with OghmaNano. The
idea is that one can read this book and learn in a step-by-step way how to simulate many
modern opto-electronic devices with very limited prior knolage. However, not all aspects of
this book are yet finished. I therefore recommend you also watch the YouTube channel (and
subscribe! ;)) where I describe many of the features in more detail and give demonstrations on
the use of the model. I would suggest you treat the videos as lectures (and take notes) rather
than entertaining videos (well I hope they are entertaining too!). New releases are generally
announced on Twitter, which I also suggest you follow to make sure you are using an up-to
date version. I often release version every week, a version that is 6 months old is considered
very old indeed. Please read papers which were published from this model - do also read the
supplementary information (SI) to the papers, as I often write about the model in there. This
book starts off with explaining how to simulate organic solar cells. This is because organic
solar cells are the easiest class of device to simulate, it then moves onto Perovskite devices,
and OLEDs. More complex classes of devices follow. If you are new to simulation work or in
indeed OghmaNano, I suggest you start with the first chapters and work your way to the more
complex devices.

https://gml.noaa.gov/ccgg/trends/
https://www.youtube.com/channel/UCbm_0AKX1SpbMMT7jilxFfA
https://twitter.com/OghmaNano


1.3. ABOUT THIS BOOK/MANUAL

Figure 1.2: a); Organic/Perovskite solar cell simulation; b) OFET transistor simulation; c)
Microlens simulation; d) Photonic waveguide simulation; e) light escaping structured films;
f) OLED simulation; g) Optical filter simulation; h) large area device modelling (hexogonal
contacts); i) Mapping carrier density in position/energy space; j) Building complex 3D meshes;
and k) resistance maps of large area devices.



CHAPTER 1. INTRODUCTION

1.4 What is the history of OghmaNano?

I started writing OghmaNano just after finishing my PhD in 2009 while taking a break for
academia and deciding what to do next. At that time it was a simple 1D drift-diffusion diode
model designed to simulate solar cells which did not take account of disorder. Over the next
14 or so years the model has been significantly expanded to model many classes of material
system and classes of devices. Since 2009 thousands of people have downloaded OghmaNano
and hundreds (the list is by definition always out of date) of people have published their own
papers using the model. If you publish with OghmaNano let me know and I will update the
list to include your paper.

1.5 What is the roadmap for OghmaNano?

The aim is to make OghmaNano a completely general opto-electronic model which can be
used by anyone to learn about and explore the world of novel opto-electronic devices. I want
OghmaNano to be an engine which people can use to push their own research forward and for
education. The exact road map on how to get there is not defined. As collaborators contact me
asking for new features I add them, what comes first depends on what people want.. I never
view OghmaNano as finished, and release improvements in small increments, therefore if you
discover and report a bug, check back in a week or so to see if it is fixed in the next version.
The same goes for this book, it evolves weekly as I write it. So if a section is missing, check
back next week it might be finished.

1.6 Using OghmaNano in industrial/academic work

You are free to use OghmaNano in industrial/academic work. In fact, I’m happy if you do so.
However, the following conditions apply:

1. If you use OghmaNano to generate results, then clearly say so in your work. This can be
as simple as one sentences saying: ”we used OghmaNano to perform the simulations”

2. If you publish a book, paper or thesis where OghmaNano has been used you must cite at
least three papers associated with the model. To find out which papers to cite, click on
the area indicated in red in figure 1.3 when using the model. PLEASE do not cite the
manual. I can’t include the manual in paper lists when applying for funding.

I ask you to do this because citations are an easy way to demonstrate that people are using
OghmaNano. Demonstrating use is key to finding money/people to continue the development
of OghmaNano. So by doing this you are guaranteeing the future of OghmaNano and its
continued availability for others. Thank you!

1.7 Bugs

I get quite a lot of feature requests from people wanting features added or for bugs to be fixed.
I really appreciate the feedback! However, I am currently employed at a UK University and
my time is split between teaching, research and admin. My performance in my job is measured
by the number of high impact papers I push out per year. I therefore have to prioritize
feature requests and bug fixes for people who would like to write a paper with me (i.e. my
collaborators).... Therefore if you would like:

http://www.Oghma-Nano.com/publications.html


1.7. BUGS

Figure 1.3: If you click on the area indicated by the red box, the model will tell you which
papers should be cited.

� A bit of advice on how to do x or y with the model then please do feel free to shoot me a
mail, and I will do my best to get back to you. If you don’t hear back from me just send
the mail again.. I get loads of e-mails, and things get lost if I don’t answer quickly.

� If you want to report a bug, then please do that, and I will do my best to fix it in the
next release. But I can’t promise when it will be fixed.

� If you would like a features added or a steady stream of help (i.e. you are asking for my
time) then please consider inviting me to join in your work and collaborate on a joint
paper. I am happy to add whatever feature you want to the model, or fix what ever bug
you may have but in return I would ask for the inclusion of my name on the author list.
By doing this it makes it much easier for me to justify sinking time into your project.

If you don’t need help from me to use OghmaNano then please feel free to do what you
want with the results - no need to contact me, but do cite it correctly.



Chapter 2

Installing OghmaNano

2.1 Windows (if you have admin rights)

Go to the download page for OghmaNano at http://www.Ogham-Nano.com/windows.php and
download the latest version. Simply double click on it and say yes to all questions, it will then
install on your PC and an icon will appear in the start menu. I recommend you install it in
the default directory.

In general I release a new version every couple of weeks and it’s worth keeping your version
up-to-date. On modern versions of windows, windows will ask you if you want to install an
unsigned executable from an unknown author, and warn you that this could damage your
computer. The reason you get this message is because I have not cryptographically signed the
.exe file. I have not signed it because I do not own a private cryptographic key with which to
do this. To get such a key I would have to send my passport off to a key authority to prove
who I am and then pay them 500 pounds/year for the privilege of them validating who I am.
Needless to say, that I am not very excited about paying 500 pounds/year so you will just have
to click away the warnings from windows.

2.2 Windows (No admin rights)

If you don’t have admin rights to your computer it can be hard to install new software, Ogh-
maNano offers the option of running OghmaNano while not properly installed. Download
the zip file containing OghmaNano from https://www.Oghma-Nano.com/download_no_admin.

php. Once you have downloaded the zip archive, open the zip file and extract the folder pub
to c:\. Then rename the folder to be called c:\OghmaNano. Once you have done this run the
executable c:\OghamNano\OghmaNano.exe (see figure 2.1).

http://www.Ogham-Nano.com/windows.php
https://www.Oghma-Nano.com/download_no_admin.php
https://www.Oghma-Nano.com/download_no_admin.php


2.2. WINDOWS (NO ADMIN RIGHTS)

Figure 2.1: Running and installing OghmaNano. Double click on the OghmaNano icon to run
the model.



Chapter 3

Getting started

3.1 Simulating a JV curve of a simple solar cell

No matter which type of device you want to
simulate, if you are new to OghmaNano my ad-
vice is to start off with this organic solar cell
simulation. Organic solar cells are by far the
most simple class of device you can simulate,
and will let you understand the basics of the
package without having to deal with 2D effects,
perovskite ions of light emission. This chapter
will guide you through your first organic solar
cell and explain the nuts and bolts of running
simulations with OghmaNano. Once installed
OghmaNano appear on the start menu, click on
it to launch it. Once run, a window resembling
that in figure 3.1 will appear.

Figure 3.1: The main OghmaNano simulation
window.

3.1.1 Making your first simulation

Click on the new simulation button. This will bring up the new simulation window (see figure
3.2). From this window double click on the Organic Solar Cells icon. This will bring up a
sub menu of different types of Organic Solar cells (see figure 3.3). The majority of these device
simulations have been published in papers and calibrated to real organic solar cells. The oldest
is the (non-inverted) P3HT:PCBM device from 2012 [3] and the newest are the PM6:Y6 devices
from 2022 [4, 5]. Double click on the P3HT:PCBM simulation for this example and save the
new simulation to disk.

Once you have saved the simulation, the main OghmaNano simulation window will be
brought up (see figure 3.4). You can look around the structure of the solar cell, by dragging the
picture of the solar cell with your mouse. Try pressing on the buttons beneath the red square,
they will change the orientation to the xy, yz or xz plane. Notice the x,y,z origin marker in the
bottom left of the 3D window. The icon with four squares will give you an orthographic view
of the solar cell.

Click on the button called Run simulation, to run the simulation (hint it looks like a blue
play button and is located in the file one to the right of the ”Simulation type ribbon” ). The
function key F9 will also run the simulation. On slower computers it could take a while. Once
the simulation is done, click on the Output tab (see figure 3.1), there you will see a list of files
the simulation has written to disk.



3.1. SIMULATING A JV CURVE OF A SIMPLE SOLAR CELL

Figure 3.2: New simulation window, from
here you can select different example sim-
ulations. It is often easier to start from a
base simulation rather than build your own
from scratch.

Figure 3.3: The organic solar cell sub
menu. There are quite a few examples of
organic solar cells in this menu. The ma-
jority of simulations have been used to pro-
duce papers [3, 4, 5].

What’s the best place to save your simulation?

OghmaNano dumps a lot of data to disk, I therefore recommend you save the simulation to
a local disk such as the C:\drive, a network drive or USB stick drive will be far too slow for
the simulation to run. I would also not save the simulation onto OneDrive or Dropbox as they
are also too slow and saving it there will generate a lot of network traffic. If you are a power
user doing a lot of fitting of experimental data I would also recommend (at your own risk(!))
disabling any extra antivirus software you have installed, as quite often the antivirus software
can’t keep up with the read/writes to disk.

Figure 3.4: The main OghmaNano simulation window with the xy, yz and xz buttons visible.
The play button is also visible which is used to run the simulation, the function key F9 can
also be used to run the simulation.



CHAPTER 3. GETTING STARTED

3.1.2 The output from your first simulation

After you have clicked on the Run Simulation button (or pressed the function key F9) to run
the simulation, the results from the simulation will have been written to disk. To view these
results click on the Output tab in the main window. There you will see the output from the
simulation, this is visible in figure 3.1

Figure 3.5: The Output tab this is just like windows file explorer, you can explore the simulation
directory tree.

Key files the simulation produces are listed in the table below:

File name Description
jv.dat Current v.s. voltage curve

charge.csv Voltage v.s. charge density curve
device.dat The 3D device model

fit data ∗ .inp Experimental data for this device.
k.csv Voltage v.s. Recombination constant k

reflect.csv Optical reflection from device
transmit.csv Optical transition through device
snapshots Electrical snapshots see 17.1

optical snapshots Optical snapshots see 17.3
sim info.dat Calculated Voc, Jsc etc.. see 4.1.4

cache Cache see 17.4

Table 3.1: Files produced by the JV simulation

Try opening jv.dat. This is a plot of the voltage applied to the solar cell against the current
generated by the device. These curves are also sometimes called the characteristic diode curve,
we can tell a lot about the solar cell’s performance by looking at these curves. Hit the ’g’ key
to bring up a grid.



3.1. SIMULATING A JV CURVE OF A SIMPLE SOLAR CELL

Figure 3.6: The output tab

Now try opening up the file sim info.dat, this file displays information on the performance
of the solar cell, such as the Open Circuit Voltage (Voc - the maximum Voltage the solar cell can
produce when iluminated), efficiency (η - the efficiency of the cell) , and short circuit current
(Jsc - the maximum current the cell can produce when it is illuminated). Figure 3.6, shows
where you can find these values on the JV curve. The sim info.dat file contains a lot of other
parameters, these are described in detail in section 4.1.4.

Question 1: What is the Jsc, Voc and Fill Factor (FF) of this solar cell? How do these
number compare to a typical Silicon solar cell? (Use the internet to find typical values
for a Silicon solar cell.)



CHAPTER 3. GETTING STARTED

3.1.3 Editing device layers

Figure 3.7: The layer editor window.

Any device in OghmaNano consists of a se-
ries of layers (this is sometimes referred to as
the epitaxy - this is a term which comes from
inorganic semiconductors). The layer editor can
be accessed from the main simulation window,
under the device structure tab. This is visible
towards the top of figure 3.4, and the layer ed-
itor is visible in figure 3.7. Within the win-
dow is a table that describes the structure of
the device. The column thickness describes the
thickness of each layer. The P3HT:PCBM layer
is the layer of material which converts photons
into electrons and holes, this is commonly called
the active layer.

An active layer thickness of 50nm is considered very thin for an organic solar cell, while an

active layer of 400nm is considered very thick (too thick for efficient device operation). Vary
the active layer between 50 nm and 400 nm, for each thickness record the device efficiency (I
suggest you perform the simulation for at least eight active layer widths).

More on the layer editor

The layer editor has the following columns:

� Layer name: Is the English name describing the layer. You can call your layers what you
want (i.e. ITO, PEDOT, fred or bob) it has no physical meaning.

� Thickness: Is the layer thickness given in meters.

� Optical material: Specifies the n/k data which is used to describe the materials optical
properties. In the simulation the n/k data are taken from experimental values stored in
the optical database 14.1 and have nothing to do with the electrical material properties
such as effective band gap.

� Layer type: Specifies to the simulation how the layer is treated when performing a simu-
lation. There are three types of layer

– active: This type of layer is electrically active and the drift diffusion solver will solve
the electrical equations in this layer type. See section 19.2. You can have as many
active layers as you like but they must be contiguous.

– contact: This tells the model that a layer is a contact and a voltage should be
applied, see section 3.1.8 for more details.

– other: Any layer which is not a contact or active.

Which layers should be active?

A common mistake people make when starting to simulate devices is to try to make all the layers
in their device active because their logic is: Current must be flowing through them so they must
be active right? However, in for example a solar cell only the BHJ or in a perovskite device
the perovskite layer will have both species of carriers (electrons+holes) and complex effects
such as photogeneration, recombination and carrier trapping. So in this layer it makes sense to



3.1. SIMULATING A JV CURVE OF A SIMPLE SOLAR CELL

solver the drift diffusion equations. Other layers which don’t have both species of carriers can
be treated simple parasitic resistances see section 3.1.6. I would only recommend setting other
layers of the device to active (such as the HTL/ETL) if you are trying to investigate effects
such as s-shaped JV curves or devices which clearly need multiple active layers such as OLEDs.
In general, try to minimize the number of active layers and always keep simulations as simple
as possible to explain the physical effects you see.

Task 2: Plot a graph (using excel or any other graphing tool), of device efficiency v.s.
thickness of the active layer. What is the optimum efficiency/thickness of the active
layer? Also plot graph Voc , Jsc and FF as a function of active layer thickness. Jsc is
generally speaking the maximum current a solar cell can generate, try to explain your
graph of J sc v.s. thickness, [Hint, the next section may help you answer this part of
the question.]



CHAPTER 3. GETTING STARTED

3.1.4 How do solar cells absorb light?

In this section we are going to learn how a solar cells interact with light. Firstly, let’s have
a look at the solar spectrum. Sunlight contains many wavelengths of light, from ultraviolet
light, though to visible light to infrared. The human eye can only see a small fraction of the
light emitted by the sun. OghmaNano stores a copy of the suns spectrum to perform the
simulations. Let’s have a look at this spectrum, to do this go to the Database tab, the choose
Optical database. This should, bring up a window as shown in figure 3.8

Figure 3.8: The optical database viewer

Double click on the icon called, AM1.5G, this should bring up a spectrum of the sun’s
spectrum. Have a look at where the peak of the spectrum is. Now close this window, and open
the spectrum called led. Where is the peak of this spectrum.

Figure 3.9: a: A plot of the entire solar spectrum. b: The image below shows the solar spectrum
at 392 nm (blue) to 692 nm (red) as observed with the Fourier Transform Spectrograph at Kitt
Peak National Observatory in 1981. R. Kurucz

Question 3: Describe the main differences between the light which comes from the
LED and the sun. Rather than referring to the various regions of the spectrum by
their wavelengths, refer to them using English words, such as infrared, UltraV iolet,
Red, and Green etc... you will find which wavelengths match to each color on the
internet. If you were designing a material for a solar cell, what wavelengths would.

https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png
https://solarsystem.nasa.gov/resources/390/the-solar-spectrum/


3.1. SIMULATING A JV CURVE OF A SIMPLE SOLAR CELL

3.1.5 Light inside solar cells

As you will have seen from when you fist opened the simulation, the solar cells are often made
from many layers of different materials. Some of these materials, are designed to absorb light,
some are designed to conduct charge carriers out of the cell. The simulator has a database
of these materials, to look at the database, click on the Database tab, the click on Material
database. This should bring up a window as shown in figure 3.10, once this is open navigate
to the directory polymers, and double click on the material p3ht, in the new window click on
the tab Absorption (see figure 3.11). This plot shows how light is absorbed in the material as
a function of wavelength.

Figure 3.10: The materials database

Figure 3.11: Optical absorption of the light.

Question 4: What color of light does the polymer p3ht absorb best? Which material
in the polymers directory do you think will absorb the suns light best?



CHAPTER 3. GETTING STARTED

3.1.6 Parasitic elements

Many devices have parasitic shunt and series resistances associated with them. Shunt resis-
tances (Rs) are caused by conduction straight through the device in thin novel devices this is
often caused by impurities in the material system. Parasitic series resistances (Rs) are often
associated with the resistance of the contacts, the resistance of the HTL/ETL or any other
resistances which are not associated with the active layer. These resistance can be seen for a
typical solar cell in figure 3.12 also shown in the figure is the ideal diode of the device. These
resistances can be set in the parasitic component window shown in figure 3.13

Figure 3.12: Circuit model of a solar cell.
Figure 3.13: The parasitic component edi-
tor.

You can change the values of series and shunt resistance in OghmaNano, by going to the
Electrical tab and then clicking on the Parasitic components button. Due to the flat broad
contacts on a solar cell, there is often a capacitance associated with the device, this is important
for transient measurements and can be calculated with the equation:

C =
εrε0A

d+ ∆
(3.1)

where A is the area of the device ε are the hyperactivities, and d is the thickness of the
device. Often for various reasons the measured capacitance of the device does not match what
one would expect from the above equation. Therefore the term ”Other layers” (∆) has been
added to the parasitic window to account for differences between measured capacitance and
layer measured layer thicknesses.

Task 5: In the optical tab you will find a control called Light intensity, this controls
the amount of light which falls on the device in Suns. Set it to zero so that the device
is in the dark. Then run two JV curve simulations, one with a shunt resistance of
1 Ohm m2 and one with a shunt resistance of 1x106 Ohm m2 (Hint you will have to
enter 1e6 in the text box). What happens to the dark JV curve? Now try running
the same same simulations again but in the light.



3.1. SIMULATING A JV CURVE OF A SIMPLE SOLAR CELL

3.1.7 Solar cells in the dark

So far, all the simulations we have run have been performed in the light. This is a logical, as
usually we are interested in solar cell performance only in the light. However, a lot of interesting
information can be gained about solar cells by studying their performance in the dark. We are
now going to turn off the light in the simulation. From the Optical tab set the Light intensity
(suns) drop down menu to 0.0 Suns, this can be seen in figure 3.14. The photons in the 3D
image should disappear as seen in figure 3.14.

Figure 3.14: Running OghmaNano in the
dark, the Light intensity drop-down menu
has been set to 0 Suns and the photons
have disappeared from the image.

Figure 3.15: A sketch of a typical dark JV
curve.

Now set the shunt resistance to 1MΩm2, and run a simulation. Plot the jv curve. It is
customary to plot jv curves on a x-linear y-log scale. To do this in the plot window, hit the
’l’ key to do this. The shape should resemble, the JV curve in figure 3.15. Certain solar cell
parameters affect different parts of the dark JV curve differently, the lower region is affected
very strongly by shunt resistance, the middle part is affected strongly by recombination, and
the upper part is strongly affected by the series resistance.

Question 6: What values of series and shunt resistance, would produce the best pos-
sible solar cell? Enter these values into the device simulator and copy and paste the
dark JV curve into your report.



CHAPTER 3. GETTING STARTED

3.1.8 The contact editor

The contact editor is used to configure the electrical contacts. Which layers act as contacts is
configured in the layer editor see section 3.1.3. The contact editor has the following fields:

Figure 3.16: The contact editor

� Name: The name of the contact, this can be any English word. It has no physical meaning.

� Top/Bottom: Sets if the contact is on the top, bottom or in 2D simulation left and right
of the device are also valid.

� Applied voltage: Sets the applied voltage on the contact. You first have to select what
type of applied voltage you want:

– Ground: This will set the contact to zero volts i.e. ground. 0V is always taken as
ground.

– Constant bias: This will apply a constant bias to a contact. It can be set to zero,
and would then be equivalent to ground. In OFET simulations the voltage value
can be set to bias one contact to a desired constant voltage.

– Change: If a contact is set to ’Change’ this tells the simulation to apply a changing
voltage to this contact. For example if you are performing a JV sweep, the sweep
voltage will be applied to this contact. Similarly if you are doing an IS simulation
(TPV, TPC, ToF etc..) the voltage will be applied/measured to this contact.

� Charge density: This sets the majority charge density on the contacts. The Fermi-offset
is calculated from the charge density. The model does not use Fermi-offset as an input,
it uses charge density.

� Majority carrier: This sets the majority carrier density to electrons or holes.

� Physical model: This selects if you have ohmic contacts or schottky contacts. I recommend
using ohmic contacts.

Task 7: For a good contact which results in a high efficiency device, the Fermi-offset
will be exactly 0 eV or very small. Firstly set the Fermi-offset to zero for both contacts,
and run a simulation. What efficiency cell do you get? Now set the Fermi-offset to
0.3eV what efficiency cell do you now have? Make a note of the charge densities on
the contacts which these Fermi-offsets produce.



3.1. SIMULATING A JV CURVE OF A SIMPLE SOLAR CELL

3.1.9 Electrical parameters

The electrical parameter editor enables you to change the electrical parameters associated with
the active layers. Here you can change mobilities, trap constants etc. If you set a layer to active
wihtin the layer editor it will apear within the electrical paramter editor. The toolbar at the
top of the window allows you to turn off and on various electrical mechanisms including:

� Drift diffusion: This enabled drift diffusion within the layer. In most circumstances if a
layer is set to be active there is no reason why you would want to turn this option off.
The one example is in the insulating layer of an OFET.

� Auger recombination: This switches on and off Auger recombination. See 8.4.4 for more
information.

� Dynamic SRH traps: This is used to turn on and off dynamic SRH traps. See section
8.4 for more information. This option should be turned on when modeling disordered
semiconductors such as organic materials.

� Equilibrium SRH traps: This can be used to introduce a single equilibrium trap level.
See section 8.4 for more information.

� Excitons: This enables the exciton diffusion equation to be solved along with the electrical
equations. See section 12.2 for more information.

� Excitons: This enables singlet and triplet states to be modelled.

Figure 3.17: Electrical parameter window

Task 8: The values of electron mobility dictate how easily charge can move in the
device. You can think of this value as akin to resistance or a sort of microscopic
resistance. Try try increasing the mobilities by two orders of magnitude and look
what happens to the light JV curve of the device and the efficiency, FF, Voc and Jsc
Do you think it is good to have a low or high value of mobility?



CHAPTER 3. GETTING STARTED

Task 9: Recombination is described later in detail but for now we can simply think of
it as how many electrons and holes meet each other in a given time. As stated above
there are various types of recombination which can happen in organic semiconductors,
but for now we will just consider the case when a free electron meets a free hole. This
is sometimes called bi-molecular recombination, the equation for this is given by:

R(x) = kn(x)p(x) (3.2)

Where n(x) is the density of electrons and p(x) is the density of holes, and k is a
rate constant. Before trying to understand this rate, firstly turn off the more complex
SRH recombination by clicking on the Dynamic SRH traps in figure 3.17. You will
notice lots of text boxes disappear. Then try changing the value of k which is set in
the text box called nfree to pfree Recombination rate constant, from 1e-15 to 1e-20 in
five steps. Run a simulation each time you change the value and make a graph of the
efficiency of the cell as you change the value.

How do I know what electrical parameters to use?

For traditional semiconductors that have been studied for years such as AlGaAs or InP the
values of charge carrier mobility, band gap, electron affinity (etc..) are well known and can
simply be looked up on sites such as this or in books such in Piprek’s [6] excellent book. These
materials are highly pure (99.999999999%) (the so-called ”eleven nines” purity). This means
that when one has a sample of such a semiconductor one knows exactly what one has in the hand
and what its physical properties will be. Organic semiconductors (also other novel materials
such as perovskites etc..) on the are typically only 99.9% on a good day, that is a whole eight
orders of magnitude less pure than their traditional counterparts. This means that when one
has a sample of such a material one is not exactly sure what material one has hold of so it’s
harder to know what the values of mobility etc will be.

Furthermore, traditional semiconductors are very ordered, this means that the atoms within
them pack in a regular lattice (think marbles packing in a biscuit tin) this again helps make
their electronic properties predictable. Novel semiconductors on the other hand are typically
much more disordered than their traditional counterparts and consist of a higgldy piggidly
collection of polymers/molecules (or perovskite domains etc..), and the exact structure of these
materials depends very much on how they were deposited. This means that due to fabrication
techniques/conditions varying between different labs, nominally the same material produced
by the same suppler but can behave very differently depending on when/who/where it was
deposited by.

So this brings us back to the question that started this section, what parameters should I
use for my novel device? Here are some tips:

� Use the base simulations provided in OghmaNano, these simulations have either been
calibrated against real experimental devices or use very reasonable electrical parameters.

� Look in the literature and try to get an idea of what values are sensible ranges for the
material systems you are looking at.

� Find some experimental data and make sure the current voltage curves produced by the
model are within the same ball park as what you would expect experimentally, if they
are totally out then you might need to tweak your electrical paramters.

� Fit the model to an experimental data set as was done in [3] and described in section 15
(This is however quite a hard thing to do though and not really recommended).

https://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/index.html


Chapter 4

Simulation modes and simulation
editors

OghmaNano uses a modular architecture that enables the core solver to perform a variety of
simulation types using . For example there is a plugin to perform steady state JV simulations,
another plugin to perform frequency domain simulations, and another to calculate the Quantum
Efficiency. They all leverage the same OghmaNano core solver but run it in a slightly different
way with custom inputs and outputs. A list of the plugins and what they do can be found
below:

� Plugins for various types of experiment

– jv: To calculate steady state JV curves.

– suns jsc: Simulate suns v.s. Jsc curves.

– suns voc: Suns v.s. Voc simulations.

– eqe: Simulates EQE.

– cv: Capacitance voltage simulations.

– ce: To simulate charge extraction experiments.

– time domain: A time domain solver for transient simulations.

– fx domain: Simulate the frequency domain response of a device, both electrical and
optical excitation.

– pl ss: Calculate the PL spectrum at in steady state.

– mode: Used to solve optical modes in 1/2D waveguides.

– spm: Simulates scanning probe microscopy in 3D electrical simulations.

– equilibrium: Equilibrium electrical simulations.

– exciton: Exciton simulations.

– mesh gen: Generates meshes.

� Optical solver plugins

– fdtd: Finite Difference Time Domain (FDTD) optical solver.

– optics: Optical transfer matrix solver for 1D structures

– light full: Optical transfer matrix solver.

– light qe: Calculates optical profile using the experimental quantum efficiency.

– light exp: Calculates optical profile assuming exponential propagation of light in 1D
structures.

– light flat: Calculates optical profile assuming flat optical profiles in the structure.

– light constant: Assumes user given values of generation rate in optical structures.

– light fromfile: Takes a generation rate from a file.



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

Figure 4.1: Simulation editors use this toolbar to edit the various simulation conditions your
device will experience.

In the simulation editors ribbon (see Figure 4.1) you can see icons that represent each plugin,
these are the simulation editors. By clicking on an icon in this ribbon you will be able to edit
how the plugin performs the various simulations. For example in the JV simulation editor one
can change the start/stop voltages of a voltage sweep. The JV editor can be seen in Figure 4.2.
Within each simulation editor the user can define multiple so called experiments. This can be
seen in below in Figure 4.2 and Figure 4.3, where two JV scans have been defined within the
JV editor, one called JV curve - low voltage and another called JV curve - high voltage. One
has a start voltage of 0.02V and stop voltage of 1.0V, while the other has a start voltage of
1.0V and a stop voltage of 10V. This feature is most useful in more complex experiments such
as in time domain experiments where one may want to simulate multiple different voltage/light
ramps/pulses for one device. There is no limit to how many experiments can be defined for
each plugin.

Figure 4.2: An experiment set up in the JV
window for high voltage simulations.

Figure 4.3: An experiment set up in the JV
window for low voltage simulations.

Once an experiment has been defined an icon representing it will appear in the simulation
mode ribbon shown in figure 4.4. You can see in the figure an icon for JV curve low voltage and
JV curve high voltage that were defined in Figure 4.2 and 4.3. You can see in Figure 4.4 that
JV curve low voltage is depressed. This means that when the simulation is run this simulation
mode will be executed. If you select another simulation mode, then when the play button (or
F9) is pressed that simulation mode will be run. Only one simulation mode can be run at a
time.



Figure 4.4: Selecting a simulation mode, in this case the JV curve low voltage has been selected
so that when the user presses play that simulation mode will be run.



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

4.1 JV editor (Steady state simulation editor)

If you click on the JV editor icon in figure 4.5, the JV editor window will open shown below in
figure 4.6.

Figure 4.5: Opening the JV editor from the simulation editor ribbon.

4.1.1 Inputs

This window can be used to configure steady state simulations. It does not matter if you are
running a current-voltage sweep on a solar cell or an OFET. This plugin will steadily ramp
the voltage from a start voltage to a stop voltage. The voltage will be applied to the contact
which has been set to Change in the contact editor (see section 3.1.8). You can set the start
voltage, stop voltage and step size. Use JV voltage step multiplayer to make the voltage step
grow each step. The default is 1.0, i.e. no growth. It can be helpful to set the step multiplyer
to a value larger than 1.0 if you want to speed up the simulation but it should not be increased
past about 1.05 or the simulation may strugle to converge.

Figure 4.6: The JV editor editor window, use this to configure steady state simulations.

4.1.2 Outputs

The files produced by the JV simulation mode are given in table 4.1. As well as these files, by
default OghmaNano will also write all internal simulation parameters to disk in the snapshots



4.1. JV EDITOR (STEADY STATE SIMULATION EDITOR)

directory. This includes band structure, potential, carrier distributions, generation rates etc..
this equates to about 50 files per voltage step. You can read more about this in the simulation
snapshots section, see 17.1. This can considerably slow down the simulation, the user can
therefore decide how much is written to disk by using the Output verbosity to disk option this
can be set to; Key results, which will result in only key files being written to disk;Nothing,
which will result in no results being written to disk; Write everything to disk which will result
in a all possible information being written to disk and Write everything to disk every nth step,
which will only out comprehensive internal simulation write data every nth step.

File name Description
jv.dat Current voltage curve

charge.dat voltage charge density
k.csv Recombination constant k

sim info.dat Calculated Voc, Jsc etc.. see 4.1.4

Table 4.1: Files produced by the JV simulation

4.1.3 sim info.dat

This is a json file containing all key simulation metrics such as Jsc, Voc, and example sim info.dat
file is given below:

4.1.4 Steady state electrical simulation

In steady state electrical simulations such as performing a JV scan the sim info.dat outputs
the following parameters.



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

S
y
m

b
ol

J
S
O

N
to

ke
n

M
ea

n
in

g
U

n
it

s
E

q
u
.

R
ef

F
F

ff
F

il
l

fa
ct

or
au

P
C

E
p

ce
P

C
E

p
er

ce
n
t

P
m
a
x

P
m
a
x

P
ow

er
at

P
m

ax
V
o
c

V
oc

V
o
c

v
oc

R
v
oc
R

R
ec

om
b
in

at
io

n
ra

te
at
P
m
a
x

jv
v
o
c

jv
v
oc

jv
p
m
a
x

jv
pm

a
x

v
oc

n
t

v
oc
n
t

T
ra

p
p

ed
el

ec
tr

on
ca

rr
ie

r
d
en

si
y
t

at
V
o
c

v
oc

p
t

v
oc
pt

T
ra

p
p

ed
h
ol

e
ca

rr
ie

r
d
en

si
ty

at
V
o
c

v
oc

n
f

v
oc
n
f

F
re

e
el

ec
tr

on
ca

rr
ie

r
d
en

si
y
t

at
V
o
c

v
oc

p
f

v
oc
pf

F
re

e
h
ol

e
ca

rr
ie

r
d
en

si
ty

at
V
o
c

J
sc

J
sc

J
sc

A
m
−

2

jv
js
c

jv
js
c

A
ve

ra
ge

ch
ar

ge
d
en

si
ty

at
J
sc

m
−

3

jv
v
bi

jv
v
bi

B
u
il
t

in
vo

lt
ag

e
V

jv
g
en

jv
g
en

A
ve

ra
ge

ge
n
er

at
io

n
ra

te
v
oc

n
p

v
oc
n
p

j p
m
a
x

j
pm

a
x

C
u
rr

en
t

at
P
m
a
x

A
m
−

2

v p
m
a
x

v
pm

a
x

V
ol

ta
ge

at
P
m
a
x

V

S
y
m

b
ol

J
S
O

N
to

ke
n

M
ea

n
in

g
U

n
it

s
E

q
u
.

R
ef

µ
js
c

m
u
js
c

A
v
g.

m
ob

il
it

y
at
J
sc

m
2
V
−

1
s−

1

µ
g
eo

m
js
c

m
u
g
eo
m
js
c

G
eo

m
.

av
g.

m
ob

il
it

y
@
J
sc

m
2
V
−

1
s−

1

µ
g
eo

m
m
ic
r
o

js
c

m
u
g
eo
m
m
ic
ro

js
c

G
eo

m
.

av
g.

m
ob

il
it

y
@
J
sc

m
2
V
−

1
s−

1

µ
v
o
c

m
u
v
oc

A
ve

ra
ge

m
ob

il
it

y
@
V
o
c

m
2
V
−

1
s−

1

µ
g
eo

m
v
o
c

m
u
g
eo
m
v
oc

G
eo

m
.

av
g.

m
ob

il
it

y
@
V
o
c

m
2
V
−

1
s−

1
√ 〈µ

e
〉〈
µ
h
〉

µ
g
eo

m
a
v
g

v
o
c

m
u
g
eo
m
m
ic
ro

v
oc

G
eo

m
.

av
g.

m
ob

il
it

y
@
V
o
c

m
2
V
−

1
s−

1
〈√
m
u
e
µ
h
〉

µ
e p
m
a
x

m
u
e
pm

a
x

A
v
g.

el
ec

tr
on

m
ob

il
it

y
@
P
m
a
x

m
2
V
−

1
s−

1

µ
h p
m
a
x

m
u
h
pm

a
x

A
v
g.

h
ol

e
m

ob
il
it

y
@
P
m
a
x

m
2
V
−

1
s−

1

µ
g
eo

m
p
m
a
x

m
u
g
eo
m
pm

a
x

G
eo

m
.

av
g.

m
ob

il
it

y
@
P
m
a
x

m
2
V
−

1
s−

1
√ 〈µ

e
〉〈
µ
h
〉

µ
g
eo

m
m
ic
r
o

p
m
a
x

m
u
g
eo
m
m
ic
ro

pm
a
x

G
eo

m
.

av
g.

m
ob

il
it

y
@
P
m
a
x

m
2
V
−

1
s−

1
〈√
m
u
e
µ
h
〉

µ
p
m
a
x

m
u
pm

a
x

A
v
g.

m
ob

il
it

y
@
P
m
a
x

m
2
V
−

1
s−

1



4.1. JV EDITOR (STEADY STATE SIMULATION EDITOR)

S
y
m

b
ol

J
S
O

N
to

ke
n

M
ea

n
in

g
U

n
it

s
E

q
u
.

R
ef

τ v
o
c

ta
u
v
oc

R
ec

om
.

ti
m

e
at
V
o
c

s
R

=
(n
−
n

0)
/τ

[7
]

τ p
m
a
x

ta
u
pm

a
x

R
ec

om
.

ti
m

e
at
P
m
a
x

s
R

=
(n
−
n

0)
/τ

[7
]

τ
a
ll

v
o
c

ta
u
a
ll
v
oc

R
ec

om
b
.

ti
m

e
at
V
o
c

s
R

=
(n

)/
τ

[7
]

τ
a
ll

p
m
a
x

ta
u
a
ll
pm

a
x

R
ec

om
b
.

ti
m

e
at
P
m
a
x

s
R

=
(n

)/
τ

[7
]

th
et
a
sr

h
th
et
a
sr
h

θ S
R
H

C
ol

le
ct

io
n

co
effi

ci
en

t
at
P
m
a
x

y
au

p
.1

00
5.

2a
[8

],
[9

]
th
et
a
sr

h
th
et
a
sr
h

θ S
R
H

C
ol

le
ct

io
n

co
effi

ci
en

t
at
P
m
a
x

au
p
.1

00
5.

2a
[8

],
[9

]



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

4.2 Time domain editor

Related YouTube videos:

Simulating optoelectronic sensors made from polymers.

The time domain editor can be used to configure time domain simulations, this is shown in
Figure 4.7. You can see, as described in the previous section that one simulation editor can be
used to edit multiple experiments. The panel on the left shows the editor being used to edit
a CELIV simulation while the panel on the right shows the editor being used to edit a TPC
simulation. The new, delete and clone buttons in the top of the window can be used to make
new simulation modes. The table in the bottom of the window can be used to setup the time
domain mesh, apply voltages or light pulses.

Figure 4.7: The time domain editor showing the user editing the duration of light/voltage
pulses.

Figure 4.8 shows different tabs in of the time domain editor. The image on the left shows
the circuit diagram used to model the CELIV experiment. The diode on the left represents the
drift diffusion simulation while the other components represent various parasitic components.
After the diode from the left next comes a capacitor used to model the charge on the plates of
the device, then a shunt resistance and then the series resistance. The final resistor on the right
represents the external resistance of the measuring equipment, this is by default set to zero but
worth checking. The drop down menu on the top left of the image above the circuit diagram
says load type, this can change the load the circuit from what is shown in the picture, to a
perfect diode where no parasitic components are shown to a device at open circuit which would
be used to simulate Transient Photo Voltage measurements. The right hand figure shows the
configuration options of the time domain window. Again notice the Output verbosity to disk
option as described in the previous section, you will see this again and again in OghmaNano.

https://www.youtube.com/watch?v=D7yJLFmTAVQ


4.2. TIME DOMAIN EDITOR

Figure 4.8: Configuring the time domain editor: Left the circuit diagram used by the time
domain window and right simulation options.



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

4.3 Frequency domain editor

Related YouTube videos:

Simulating impedance spectroscopy (IS) in solar cells.

4.3.1 Overview

The frequency plugin allows you to simulate the frequency domain response of the device. Using
this tool one can perform impedance spectroscopy, as well as optically excited measurements
such as Intensity Modulated Photo Spectroscopy (IMPS), Intensity Modulated Voltage Spec-
troscopy (IMVS). The domain editor allows you to configure frequency domain simulations.
This is shown below in Figures 4.9 and 4.10. On the left hand side is the frequency domain
mesh editor this is used to define which frequencies will be simulated. Figure 4.10 shows the
circuit tab of the frequency domain window, this sets the electrical configuration of the simula-
tion. One can either simulate an ideal diode (this is the fastest type of simulation to perform),
a diode with parasitic components or a diode in open circuit. An ideal diode would be used for
IMPS simulations while the open circuit model would be used for IMVS simulations. Pick the
circuit depending on what conditions you want to simulate. If you want examples of frequency
domain simulation look in the new simulation window under Organic Solar cells, some of the
PM6:Y6 devices have examples of frequency domain simulations already set up.

Figure 4.9: The frequency domain editor win-
dow

Figure 4.10: A circuit set up for frequency do-
main simulations.

Large signal or small signal

There are two ways to simulate frequency domain simulations in a device model, a large signal
approach or a small signal approach. The small signal approach assumes the problem we
are looking at varies linearly around a DC point, this may or may not be true depending on
the conditions one is looking at. This method is however computationally fast. The second
approach is to use a large signal approach and rather than simulating linear variation around
a set point one simulates the time domain response of the device in full for each wavelength of
interest. This method is cope better non-linear systems and one does not need to worry if one
is in the large or small signal regime but is slower. OghmaNano uses the large signal approach.

https://www.youtube.com/watch?v=NJAsZeiB5FU


4.3. FREQUENCY DOMAIN EDITOR

File name Description
Vexternal The external voltage applied to the cell
Simulation type Leave this as Large signal.
Load resistor External load resistor, this should be usually

set to zero.
FX domain mesh points The number of time steps used to simulate

each cycle
Cycles to simulate The number of complete periods of any given

frequency that are simulated
Excite with How the device is excited, either optically or

electrically.
Measure What is measured, current or voltage.
Modulation depth How deep is the DC voltage/current modu-

lated
Periods to fit The number of frequency domain cycles that

are fit to extract phase angle
Output verbosity to disk How much data is dumped to disk (described

in other sections)
Output verbosity to screen How much data is shown on the creen (de-

scribed in other sections)

Table 4.2: Files produced by the time domain simulation

4.3.2 Inputs

In Figure 4.11 the Configure tab of the frequency domain window can be seen. This decides
exactly how the simulation will perform. These are described below in table 4.2

4.3.3 Outputs

File name Description
real imag.csv Re(i(fx)) v.s. Im(i(fx))
fx imag.csv fx v.s. Im(i(fx))
fx real.csv fx v.s. Re(i(fx))
fx abs.csv fx v.s. |i(fx)|
fx phi.csv fx v.s. 6 i(fx)
fx C.csv fx v.s. Capacitance
fx R.csv fx v.s. Resistance

Table 4.3: Files produced by the time domain simulation



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

Figure 4.11: Configuring a frequency domain simulation



4.4. SUNS-VOC EDITOR

4.4 Suns-Voc editor

The Suns-Voc plugin can be used to calculate how open circuit voltage changes as a function
of light intensity. This can be useful for understanding tail slope and disorder in devices. A
picture of the suns-voc editor window can be seen below in figure 4.12. The window can be
used to set the start and stop light intensity. The Suns-Voc applies the voltage to the contact
that is labelled Change.

Figure 4.12: The suns-voc editor window

4.4.1 Outputs

File name Description
suns voc.csv Suns v.s. Voc curve
suns Q.csv Suns v.s. Charge density

suns mu.csv Suns v.s. average charge carrier mobility
suns tau.csv Suns v.s. recombination constant tau
Q Qtau.csv Charge density v.s. recombination constant tau
Q mu.csv Charge density v.s. charge carrier mobility
Q kbi.csv Charge density v.s. recombination prefactor kbi

Q trap filling.csv Charge density v.s. fraction of filled traps
V mu.csv Voc v.s. average charge carrier mobility

Table 4.4: Files produced by the Suns-Voc simulation



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

4.5 Suns-Jsc editor

The Jsc editor can be used to configure suns-Jsc simulations. It enables you to set the start
light intensity, stop light intensity and how big the steps are. This is shown in figure 4.13.

Figure 4.13: The JV curve editor window

4.5.1 Outputs

File name Description
suns jsc.csv Suns v.s. Jsc curve
suns mu.csv Suns v.s. average charge carrier mobility

Table 4.5: Files produced by the Suns-Jsc simulation



4.6. QUANTUM EFFICIENCY EDITOR

4.6 Quantum efficiency editor

The quantum efficiency editor simulates both EQE and IQE. The configuration window can be
used to set the voltage at which EQE and IQE are performed.

Figure 4.14: The quantum efficiency editor window

4.6.1 Outputs

File name Description
eqe.csv Wavelength v.s. EQE

E eqe.csv Photon energy v.s. EQE
E eqe norm.csv Photon energy v.s. Normalized EQE

iqe.csv Wavelength v.s. IQE
E iqe.csv Photon energy v.s. IQE

lam Gn.csv Wavelength v.s. Average charge carrier generation rate

Table 4.6: Files produced by the Suns-Jsc simulation



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

4.7 Scanning probe microscopy editor

When simulating a 3D structure such as a large area contact one often wants to map the resis-
tance between an x,z point on the surface of the device and the charge extraction contact. This
tool is used to apply voltages systematically over z,x regions to map out voltage or resistance
profiles in space. This tool is usually used with either full 2/3D drift diffusion simulations or
the 3D large area electrical circuit model. There is more about this tool in Section 11.

Figure 4.15: The scanning probe microscopy editor



4.8. ELECTRICAL EQUILIBRIUM EDITOR

4.8 Electrical equilibrium editor

Sometimes when studding a device, it is not necessary to simulate an entire JV curve. One
may for example just for example be interested in the band structure at 0V in the dark. The
Electrical equilibrium allows the user to setup simulations that only simulate the device at
equilibrium (0V applied bias in the dark).

Figure 4.16: Electrical equilibrium editor



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

4.9 Steady state photoluminencense editor

This tool is used to generate photoluminencense spectra at a desired voltage, either short circuit
or open circuit.

Figure 4.17: Steady state photoluminencense editor



4.10. CHARGE EXTRACTION EDITOR

4.10 Charge extraction editor

This is the charge extraction editor, it allows
one to simulate charge extraction transients. A
charge extraction experiment is performed to
find out how much charge is in a disordered de-
vice. For this type of experiment one runs the
device at a set voltage and light intensity say
1V @ 1Sun. Then one turns off the light and
shorts the cell through a resistor and integrates
the total current outputted by the cell to get
the charge that was in the cell when it was op-
erating. Typically the cell is shorted through
the the 50 Ohm termination of an oscilloscope
so that by measuring the voltage transient and
applying V=IR one can calculate the current
and thus total charge. Figure 4.18: Charge extraction editor

This type of measurement is important in disordered devices when one wants to find out
how much charge is in the trap states. It is important to note that the experiment does not
extract all the charge in the device, it only extracts the difference between charge at operating
conditions and 0V @ 0 Suns. The background charge due to injection from the contacts/doping
is still left in the device. There is also error loss in the CE experiment due to recombination
annihilating charge before it has left the device.

4.10.1 Outputs

File name Description
time i.csv Time v.s. extraction current for a single CE experiment
time v.csv Time v.s. voltage for a single CE experiment

suns Q ce.dat Suns v.s. extracted charge including effects of recombination
v np.dat Voltage c.s. extracted charge including the effects of recombination

suns np.dat Suns c.s. extracted charge including the effects of recombination
v np ideal.dat Voltage v.s. extracted charge not including the effects of recombination

suns np ideal.dat Suns v.s. extracted charge not including the effects of recombination

Table 4.7: Files produced by the charge extraction simulation



CHAPTER 4. SIMULATION MODES AND SIMULATION EDITORS

4.11 Capacitance voltage editor

Experimentally capacitance voltage (CV) measurements are a useful way to determine doping
within a device. In OghmaNano CV measurements use a cut down version of frequency domain
simulation tool described above.

Figure 4.19: The capacitance voltage editor

4.11.1 Outputs

File name Description
real imag.dat Re(i(fx)) v.s. Im(i(fx))

fx real.dat fx v.s. Re(i(fx))
fx imag.dat fx v.s. Im(i(fx))

cv.dat fx v.s. Capacitance
cv2.dat fx v.s. 1/Capacitance2

Table 4.8: Files produced by the CV simulation



Chapter 5

2D Simulations - OFETs

Tutorial on OFET simulation.

OghmaNano contains a 2D electrical solver that can be used for simulating OFETs and other
2D structures. To perform 2D simulations use the default OFET simulation in OghmaNano as
a starting point. You can do this by double clicking on OFET simulation in the new simulation
window (see figure ??).

Note: The 2D electrical solver is a separate plug in to the 1D solver, if you select the
default OFET simulation OghmaNano as a starting point for your own 2D simulations
OghmaNano will be all set up to do 2D electrical simulations. If you try to convert a
1D simulation such as a solar cell to a 2D simulation (not recommended) please read
section 8.8 on how to select the correct solver.

To make a new OFET simulation, click on the new simulation button. In the new simula-
tion window and select the OFET simulations (see figure 5.1). Double clicking on this will
bring up the OFET sub menu, where other types of OFETs are also stored. There is one
example with a top contacts, one with side contacts and one which is at low temperature. For
this capter we will be looking at the (standard) top contact OFET (Figure ??), double click
on this and save the new simulation to disk.

Figure 5.1: Setlect the OFET submenu to main
a new OFET simulation

Figure 5.2: Select the OFET top contact for
this example.

https://www.youtube.com/watch?v=0RK9GEyb4HQ


CHAPTER 5. 2D SIMULATIONS - OFETS

5.0.1 The anatomy of a 2D simulation

Figure 5.3: The default ofet simulation.

The OFET structure shown in Figure 5.3 has three contacts, a gate, source and a drain. The
source and drain are shown on the top of the simulation as gold bars, a semiconductor layer is
shown in blue and an insulating later shown in red. The gate contact is visible at the bottom
of the structure. This layered structure is defined in layer editor, see figure 5.4. The layer
editor has been described in detail in section 3.1.3. It can be seen that the top and bottom
layers have been set to contact and the insulator (PMMA) and semiconducting layer have been
set to active. This means that the electrical model will only consider the semiconductor and
insulator layers and the contacts will be used as boundary conditions. As this structure is not
emitting light the Optical material column has no impact on the simulation results so it has
been arbitrary materials.

Figure 5.4: The layers of an OFET device



The contacts are defined in the contact editor shown in Figure 5.5. The contact editor has
been described in detail in section 3.1.8, however because this is a 2D simulation another two
extra columns have appeared. They are start and width. These define the start position of the
contact on the x-axis and width which describes the width of the contact on the x-axis. The
source starts at 0 m and extends to 5µm, the drain starts at 75 µm and extends to 5µm, while
the gate starts at 0 m and extends to cover the entire width of the device which is 80 µm. If you
are unsure which is the x-axis, the origin marker is visible at the bottom of figure 5.3. Notice
also that under the column Applied Voltage, the source is marked Ground this means that
0V will be applied to the ground, the gate is marked change meaning that our voltage ramp
as defined in the JV editor will be applied to this contact, and the drain is marked constant
bias with a voltage of 15V, this means that a constant voltage of 15V will be applied to this
contact. And thus we are scanning the gate contact while applying a constant voltage between
the source and the drain.

Figure 5.5: Editing the contacts on a 2D device.

5.0.2 Electrical parameters

Disabling drift diffusion in the insulator layer

The electrical parameters for both the semiconductor and the insulator can be seen in Figure
5.6, these can be accessed through the Electrical parameter editor. The Electrical parameter
editor is described in detail in section 3.1.9. The left image shows the parameters for the
semiconducting layer while the right figure shows the parameters for PMMA. If you look in the
top left of both windows you will see a button called Enable Drift Diff. which stands for Enable
Drift Diffusion. When this is depressed the drift diffusion equations will be solved within the
layer which take into account charge movement. When this is not depressed only Poisson’s
equation will be solved in the layer and the movement of charge ignored. If you notice this
button is depressed in the Semiconductor layer and not depressed in the PMMA insulator.
This means that the drift-diffusion equations will be solved in the semiconductor and not in
the PMMA. The reason for doing this is that charge does not conduct in the PMMA so there
is no point in solving the drift-diffusion equations in that layer. Another approach would be to
solve the drift-diffusion equations in both layers and just set the mobility in the PMMA to be
very low but this will result in slower computational times and is less numerically stable, there
is more on this approach below.



CHAPTER 5. 2D SIMULATIONS - OFETS

Figure 5.6: Electrical parameters for both the semiconductor (left) and the insulator (right)

5.0.3 Running a 2D simulation

2D simulations are run in the same way as 1D simulations, simply click on the play button, see
figure 5.7.

Figure 5.7: Running an OFET simulation

The simulation will take longer than it’s 1D counterparts simply because there will be
more equations to solve. If you have set a contact at a high starting voltage the solver will
initially ramp the contact voltage in a stepwise way until the desired voltage is achieved before
the desired voltage sweep is applied to the active contact. After the simulation has run the
following files will be produced showing the current density from each contact.

File name Description
contact iv0.dat Current voltage current curve for contact 0
contact iv1.dat Current voltage current curve for contact 1
contact iv2.dat Current voltage current curve for contact 2
contact jv0.dat Current density voltage current curve for contact 0
contact jv1.dat Current density voltage current curve for contact 1
contact jv2.dat Current density voltage current curve for contact 2

snapshots Simulation snapshots

Table 5.1: Files produced by the steady state OFET simulation

Contacts in OghmaNano are labelled from 0 to N in the order they are defined in the contact
editor (see Figure 5.5), so in this case Contact 0 will be the source, contact 1 will be the gate
and contact 2 will be the drain. You can see the result of running the simulation in Figure 5.8.



Figure 5.8: Results from a 2D OFET simulation the JV curves for each contact are shown
along with a view of the the electron current density in the x direction (bottom right).

5.0.4 Meshing in 2D

Computational speed, traps and meshing

You will notice that in this example the SRH trapping/escape equations are solved in the semi-
conductor layer, you can see this as the SRH trap button is depressed. Trapping is often needed
to reproduce experimental results. If you scroll down the parameters list in the Semiconductor
layer you will see that it has 8 trap states. However,it is worth taking a moment to consider
the computational load of introducing trap states. If our 2D device has Nx mesh points in the
x direction and Ny mesh points in the y direction then and we are solving Poisson’s equation,
the electron drift diffusion equation and the hole drift diffusion equation then we will be solving
3 ∗Nx ∗Ny equations in total. If we now introduce 8 trap states for electrons and 8 trap states
for holes we will then be solving 3 ∗Nx ∗Ny + 8 ∗ 2 ∗Nx ∗Ny equations. So if you want a speedy
simulation or are just trying something out it is worth trying to reduce the number of mesh
points, and also reduce the number of trap states and/or turn traps off in the first instance.

Adjusting the mesh

The electrical mesh editor can be accessed through the electrical ribbon in the main window.
The mesh editor is shown in Figure 5.9, here the x and y mesh can be adjusted. The number



CHAPTER 5. 2D SIMULATIONS - OFETS

of mesh points directly affects the speed of the computation, as a general rule try to minimize
the number of mesh points you use. I would recommend defining one electrical mesh to cover
the Semiconductor layer and one to cover the insulator layer.

Figure 5.9: Meshing

5.0.5 Solving the drift diffusion equations over the entire device

Sometimes you may want to solve the drift diffusion equations over the entire device this could
be because you have a poor insulator on the gate contact, it is very uncommon to want to do
this but if you want to follow the steps below. Using doing this is not recommended.

� Mobility: Set the mobility of the insulator to a value of 1x10−12 − 1x10−15m2/(V s) to
limit current flow into the region. However, the value should not be set too low (see
section 8.8.1) or the solver may become numerically unstable.

� Effective density of states: Keep these the same for both layers, just to keep things simple.

� Number of trap states: This must the same in both layers, the density of the states and
the Urbach energy can change though.

� Eg and Xi: Although it is tempting to simply enter the experimental values for Xi and
Eg for both the insulator and the semiconductor, one has to be careful in doing this as
some insulators (SiO2) have very big band gaps which mean the number of carriers get
very small and make the simulation unstable (read section 8.8.1 for an explanation). If
you want to simulate a jump in the band gap into an insulator, my is to make the jump
significantly bigger than 3/2kT = 25meV which is the average kinetic energy of a charge
carrier. If the gap is between 0.5 − 1.0V charge carriers will have problems penetrating
the barrier and there is no need to simulate bigger steps.



Chapter 6

2D simulation of bulk-heterojunctions

Simulating 2D BHJ structures in OghmaNano

To be written but there is an example simulation in the new simulation window.

https://www.youtube.com/watch?v=dlEscq1WSJQ


Chapter 7

Meshing

7.1 Meshing

The thermal optical and electrical ribbons are shown below in Figure 7.1, it can be seen that
in each of these ribbons is a a mesh button, where the thermal, optical and electrical meshes
can be defined. OghmaNano in principle describes the physical problems

Figure 7.1: The thermal, electrical and optical ribbons.

7.2 Editing the electrical mesh/layers

The device structure is split up into layers of different materials. These can be configured
in layer editor which is discussed in section 3.1.3. Some of these layers will have the layer
type ’active’. An ’active’ layer is a layer over which the electrical model will be applied. The
electrical model needs a finite difference mesh to to be setup for it to work. Usually, this will be
take care of automatically by OghmaNano. However, some users will want fine control over the
mesh. This section describes how to do that. The electrical mesh editor is depicted in figure
7.3.

The buttons marked 1D, 2D and 3D at the top of the window can be used to toggle the
simulation between 1D, 2D and 3D modes. (Note, if you want to do 2D or 3D simulations you
are best off using a default 2D simulation, such as the OFET simulation. This is because to do
2D/3D simulations, a special newton solver configuration will be needed.) The table on the left
hand side is used to configure the mesh. The sum of the mesh layer thicknesses must exactly
match that of the sum of the active layers. If this is not the case, the model will give an error
message. The columns thickness and mesh points, determine the thickness of the mesh layer
and the number of points on the mesh layer, if there is a uniform spacing between mesh points.



7.2. EDITING THE ELECTRICAL MESH/LAYERS

The column, ’step multiply’ by how much to grow each step. In this example, the mesh spacing
is increased by a factor of 0.1 each step. The toggle button left/right, defines on which side
the mesh layer is generated. In this example there are two mesh layers, one starting on the left
and one starting on the right. The resulting mesh is plotted in the graph at the bottom of the
window. It can be seen that a non-linear mesh has been generated.

Figure 7.2: The electrical mesh editor

Figure 7.3: The electrical mesh editor



CHAPTER 7. MESHING

Figure 7.4: A 1D diagram of the mesh

7.3 Should I be simulating in 1D, 2D or 3D?

When deciding if you should perform 1D, 2D or 3D, simulations, consider the dimensionality
of your problem. For example if you consider a solar cell, it is only a few micros thick, and
there is rapid variation in the structure, charge densities, mobilities, and doping as a function
of depth (y). However, the structure will not vary very in the lateral (xz) plane. Therefore, in
general to capture all interesting effects present within a solar cell one only needs a 1D model.
If one now considers OFETs, there is both vertical an lateral current flow, therefore one can
not get away with a 1D model any more, as one must simulate both vertical current flow, and
current between the source and the drain, thus one needs a 2D simulation. As the number of
dimensions increases, computation speed will decrease, therefore my general advice is to use
the minimum number of dimensions possible to solve your problem.

In short try to make your simulation as simple as possible as it will save you time and effort.
Generally the following geometries could be used for various types of devices:

Device type Number of dimentions
Solarcells 1D

Opticalfilter 1D
OFET 2D

Table 7.1: How many dimensions should I use to simulate my device.



Chapter 8

Theory of drift diffusion modelling

8.1 Outline

OghmaNano’s electrical model is a 1D/2D drift-diffusion model (like many others) however
the special thing about OghmaNano which makes it very good for disordered materials (Think
organics, perovskites and a-Si) is that it goes to the trouble of explicitly solving the Shockley-
Read-Hall equations as a function of energy and position space. This enables one to model
effects such as mobility/recombination rates changing as a function of carrier population and
enables one to correctly model transients as one does not have to assume all the carriers in the
trap states have reached equilibrium. Things such as ToF transients, CELIV transients etc..
can be modelled with ease. Of course can be used for more ordered materials as well, you then
just need to turn the traps off.

8.2 Electrostatic potential

The conduction band/valance band (or LUMO/HOMO in organic semiconductor speak) are
defined as

ELUMO = −χ− qφ (8.1)

EHOMO = −χ− Eg − qφ (8.2)

To obtain the internal potential distribution within the device Poisson’s equation is solved,

∇ · ε0εr∇ = q(nf + nt − pf − pt −Nad +−Nion + a), (8.3)

where nf , nt are the carrier densities of free and trapped electrons; pf and pt are the carrier
densities of the free and trapped holes; and Nad is the doping density. Nion is the background
density of perovskite ions and a is the density of mobile ions.

8.3 Free charge carrier statistics

For free carriers the model can either use Maxwell-Boltzmann statistics i.e.

nl = Ncexp

(
Fn − Ec

kT

)
(8.4)



CHAPTER 8. THEORY OF DRIFT DIFFUSION MODELLING

pl = Nvexp

(
Ev − Fp

kT

)
(8.5)

or full Fermi-dirac statistics i.e.

nfree(Ef , T ) =

∫ ∞
Emin

ρ(E)f(E,Ef , T )dE (8.6)

pfree(Ef , T ) =

∫ ∞
Emin

ρ(E)f(E,Ef , T )dE (8.7)

where

f(E) =
1

1 + eE−Ef/kT
(8.8)

When using FD statistics free carriers are assumed to move in a parabolic band:

ρ(E)3D =

√
E

4π2

(
2m∗

h̄2

)3/2

(8.9)

The average energy of the carriers is defined as

W̄ (Ef , T ) =

∫∞
Emin

Eρ(E)f(E,Ef , T )dE∫∞
Emin

ρ(E)f(E,Ef , T )dE
(8.10)

8.4 Carrier trapping and Shockley-Read-Hall recombi-

nation

The model provides two methods to account for carrier trapping and recombination via trap
states. The first by equation 8.11, this assumes that the trapped carrier distribution has
reached equilibrium. It also assumes there are relatively few trapped charge carriers compared
the the number of free carriers, and thus the trapped charges do not significantly change the
electrostatic potential. These assumptions are valid when the material is very ordered (i.e.
GaAs) or at a push in steady state for some moderately disordered material systems. However
if you wish to simulate transient or frequency domain experiments, then you can no longer use
8.11. Instead, one must use a non-equilibrium SRH approach which does not assume trapped
carriers have reached equilibrium. Unlike many other models, OghmaNano has such a non-
equilibrium SRH model built in this is described in section 8.4.2. In fact, it is turned on by
default so when using OghmaNano you have to go out of your way to turn on equation 8.11.

To understand the importance of such a dynamic solver, consider the following example:
You are performing a transient photocurrent experiment (TPC). You photo-excite your device
with a laser, carriers very quickly become trapped during the first 1-2µs after photoexcitation,
as time passes, the carriers gradually de-trap from deeper and deeper trap states and produce
the long photocurrent transient [10]. These transients can often extend out to over 1 second
after photo-excitation. Current at the start of the transient originates from shallow traps while
current at the end of the transient originates from carriers from very deep trap levels. To
simulate this one has to be able to account for the gradual emptying of trap states firstly
starting at the shallow traps, then progressing to deeper and deeper trap states. Were one to
assume all trap states were in equilibrium one would not be able to simulate this process.

So in summary, although many others have used 8.11 to model disordered devices in time
DON’T you results won’t make sense. If you want to simulate anything but steady state in an



8.4. CARRIER TRAPPING AND SHOCKLEY-READ-HALL RECOMBINATION

Figure 8.1: Trap filling in both energy and position space as the solar cell is taken from a
negative bias Carrier trapping, de-trapping, and recombination

ordered device turn ON the non-equilibrium solver.

8.4.1 Equilibrium Shockley-Read-Hall recombination

For some very ordered material systems where there are not many trap states it is enough to
describe SRH trap states using the equation:

RSRH =
np− n0 ∗ p0

τp(n+ n1) + τn(p+ p1)
(8.11)

where RSRH is the rate of SRH recombination, n, p are the density of free charge carriers
n0, p0, are the equilibrium density of charge carriers, τn,p are the SRH life times and n1 and p1

are the trapped electron and hole densities when the Fermi-level matches the trap state energy.
This can be turned on in the electrical parameter editor.

8.4.2 Non-equilibrium carrier trapping and recombination using Shockley-
Read-Hall trap states

To describe charge becoming trapping into trap states and recombination associated with those
states the model uses Shockley-Read-Hall (SRH) theory. A 0D depiction of this SRH recom-
bination and trapping is shown in figure 8.1, the free electron and hole carrier distributions
are labeled as n free and p free respectively. The trapped carrier populations are denoted with
n trap and p trap , they are depicted with filled red and blue boxes. SRH theory describes
the rates at which electrons and holes become captured and escape from the carrier traps. If
one considers a single electron trap, the change in population of this trap can be described
by four carrier capture and escape rates as depicted in figure 8.1. The rate rec describes the
rate at which electrons become captured into the electron trap, ree is the rate which electrons
can escape from the trap back to the free electron population, rhc is the rate at which free
holes get trapped and rhe is the rate at which holes escape back to the free hole population.
Recombination is described by holes becoming captured into electron space slice through our
1D traps. Analogous processes are also defined for the hole traps.

For each trap level the carrier balance 8.12 is solved, giving each trap level an independent
quasi-Fermi level. Each point in position space can be allocated between 10 and 160 independent
trap states. The rates of each process rec, ree, rhc, and rhe are give in table 8.1.

δnt

∂t
= rec − ree − rhc + rhe (8.12)



CHAPTER 8. THEORY OF DRIFT DIFFUSION MODELLING

Mechanism Symbol Description
Electron capture rate rec nvthσnNt(1− f)
Electron escape rate ree enNtf
Hole capture rate rhc pvthσpNtf
Hole escape rate rhe epNt(1− f)

Table 8.1: Shockley-Read-Hall trap capture and emission rates, where f is the fermi-Dirac
occupation function and Nt is the trap density of a single carrier trap.

The escape probabilities are given by:

en = vthσnNcexp

(
Et − Ec

kT

)
(8.13)

and

ep = vthσpNvexp

(
Ev − Et

kT

)
(8.14)

where σn,p are the trap cross sections, vth is the thermal emission velocity of the carriers, and
Nc,v are the effective density of states for free electrons or holes. The distribution of trapped
states (DoS) is defined between the mobility edges as

ρe/h(E) = N e/hexp(E/Ee/h
u ) (8.15)

where , Ne/h is the density of trap states at the LUMO or HOMO band edge in states/eV

and where E
e/h
U is slope energy of the density of states.

The value of Nt for any given trap level is calculated by averaging the DoS function over
the energy (∆E ) which a trap occupies:

Nt(E) =

∫ E+∆E/2

E−∆E/2
ρeEdE

∆E
(8.16)

The occupation function is given by the equation,

f(Et, Ft) =
1

e
Et−Ft

kT + 1
(8.17)

Where, Et is the trap level, and Ft is the Fermi-Level of the trap. The carrier escape rates for
electrons and holes are given by

8.4.3 Free-to-free carrier recombination

A free-carrier-to-free-carrier recombination (bi-molecular) pathway is also included. However,
most organic solar cells have a great deal of trap states and an ideality factor greater than
1.0 suggesting that free-to-free recombination is not the dominant mechanism. Free-to-free
recombination is described using equation 8.18

Rfree = kr(nfpf − n0p0) (8.18)

8.4.4 Auger recombination

Auger recombination is as



8.5. CHARGE CARRIER TRANSPORT

RAU = (CAU
n n+ CAU

p p)(np− n0p0) (8.19)

where CAU
n and CAU

p are the Auger coefficient of electrons and holes in m6s−1. This can be
set in the electrical paramter editor.

8.5 Charge carrier transport

To describe charge carrier transport, the bi-polar drift-diffusion equations are solved in position
space for electrons,

Jn = qµenf∇Ec + qDn∇nf , (8.20)

and holes,
Jp = qµhpf∇Ev − qDp∇pf . (8.21)

Conservation of charge carriers is forced by solving the charge carrier continuity equations
for both electrons,

∇Jn = q(R−G+
∂n

∂t
), (8.22)

and holes

∇Jp = −q(R−G+
∂p

∂t
). (8.23)

where R and G are the net recombination and generation rates per unit volume respectively.

8.6 Perovskite mobile ion solver

The mobile ion solver is implemented after the work of Calado [11]

Ja = qµaaf∇Ev − qDa∇af . (8.24)

∇Ja = −q∂a
∂t
. (8.25)

8.7 Semiconductor interfaces

8.7.1 Tunnelling through heterojunctions

Tunnelling of holes through hetrojunction interfaces are is give by

Jp = qTh((p1 − peq1 )− (p0 − peq0 )), (8.26)

and for electrons

Jn = −qTe((n1 − neq
1 )− (n0 − neq

0 )). (8.27)

Where Th and Te represent the rate constants of the tunnelling. This can be configured in
the interfaces editor.

8.7.2 Doping on the interface

Using the interface editor, layers of doping measuring one mesh point thick can be added to
either side of the interface. This is useful for OFET simulations where interface charge is



CHAPTER 8. THEORY OF DRIFT DIFFUSION MODELLING

important to the turn on voltage.



8.8. CONFIGURING THE ELECTRICAL SOLVER

8.8 Configuring the electrical solver

Behind OghmaNano are a series of non-linear solvers that solve the electrical equations in a
highly efficient way. These can be configured by going to the electrical tab. There you will see
the Drift diffusion button, to the left of that is an arrow. If you click on this it will bring up a
window which allows you to configure the ”Newton solver”. The options are described below.

Related YouTube videos:

How to optimize simulations in OghmaNano so they run faster

� Max Electrical iterations (first step): The maximum number of steps the solver can after
it’s cold started onto a new problem. This is usually at 0V in the dark. The solver usually
takes more steps on it’s first go.

� Electrical clamp (first step): This is a number by which the maximum newton step is
clamped to. 0.1 will make the solver very stable but very slow, 4.0 will make the solver
very fast but unstable. A recommended value of 1.0 is suggested for normal problems. If
you are solving for high doping or other unusual conditions it can be worth reducing the
step. Likewise if you want the solver to be fast and you know the problem is easy set the
value to 2.0 or higher. For the first step, I would consider setting this value to be slightly
lower than for the subsequent steps.

� Desired solver error (first step): This is the desired error, smaller is more accurate and
slower. I would generally not accept answers above 1x10−5

� Max Electrical iterations: Maximum number of electrical iterations on all but the first
step.

� Electrical clamp: Electrical clamp (first step): This is a number by which the maximum
newton step is clamped to. 0.1 will make the solver very stable but very slow, 4.0 will
make the solver very fast but unstable. A recommended value of 1.0 is suggested for
normal problems. If you are solving for high doping or other unusual conditions it can
be worth reducing the step. Likewise if you want the solver to be fast and you know the
problem is easy set the value to 2.0 or higher.

� Desired solver error: This is the desired error, smaller is more accurate and slower. I
would generally not accept answers above 1x10−5

� Newton solver clever exit: If the solver starts bouncing in the noise then assume we can’t
get a better answer and quit.

� Newton minimum iterations: Don’t allow the solver to quit before doing this number of
steps. Often the error in the first few steps of the solution can be below ”Desired solver
error”, thus the solver can quit before finding the true answer.

� Solve Kirchhoff’s current law in Newton solver: Solve Kirchhoff’s current law in the main
Newton Jacobian.

� Matrix solver: This selects the matrix solver to use.

� Newton solver to use:

– none: No electrical solver is selected, this is used when only solving optical or thermal
problems.

https://www.youtube.com/watch?v=D2WG1_wTbdc


CHAPTER 8. THEORY OF DRIFT DIFFUSION MODELLING

– newton: The standard 1D Newton solver.

– newton 2D: The standard 2D Newton solver.

– newton norm: The standard 1D Newton solver but with Slotboom normalization.
This is handy when solving systems with large difference in density between minority
and majority carrier density.

– poisson 2d: A 2D Poisson solver with no drift diffusion equations.

� Complex matrix solver:

� Slotboom T0: Slotboom variable for the newton norm solver.

� Slotboom D0: Slotboom variable for the newton norm solver.

� Slotboom n0: Slotboom variable for the newton norm solver.

� Use newton cache (experimental): Cache large problems to disk - experimental.

� Quit on convergence problem: Quit on convergence problem. Quite often

� Quit on inverted Fermi-level:

� Solver output verbosity:

8.8.1 Solver stability

Avoiding very big and very small numbers

Try opening up MATLAB (Octave if you are on Linux) and typing in the following equation
((1e − 1 + 1e1) − 1e1)/1e − 1. Before pressing enter, try to evaluate it in your head. the 1e1
and the −1e1 cancel leaving 1e−1

1e−1
which equates to 1. Now try replacing the powers to 1 with

to the 19, so type in ((1e−19+1e19)−1e19)/1e−19, again evaluate this in your head. Again ,
1e19 and the −1e19 cancel leaving 1e−19

1e−19
which equates to 1 Now let the computer evaluate the

expression. In fact this time the computer does not give you 1 but gives you 0. Double check
that you typed it in correctly... you did so what is happening. Why is the computer giving
me an answer which is 100% wrong. The answer is easy, computers have a limited precision.
This means that they can only store a limited number of decimal places. On a modern PC it’s
about 15 decimal places. After this the computer starts ignoring the numbers. So when we
added (1e− 19 + 1e19) the computer could not keep track of the decimal places so it assumed
that the answer was exactly 1.000000000000000e19 and not 1.0000000000000000001e19, then
when we subtracted −1e19 from the answer the computer gave us zero instead of 1e− 19. The
1e− 19 was lost in the precision.

All computers are affected by this no matter how powerful they are, this has important
implications when solving device equations. If you have too big a spread of numbers in your
simulation (matrix/Jacobian) the computer won’t be able to solve it easily. So if you have
very low values of mobility say 1e− 19 and very big values say 1e5 the computer wills start to
have problems solving the electrical problem. There fore generally try to reduce the spread of
parameters in you model. This is important when simulating insulators.

Avoid zeros

Zeros are bad because they cause divide by zero errors. So don’t have zero mobilities, carrier
cross sections, tail slopes or densities of states. It’s fine to have zero recombination constants
though.



8.8. CONFIGURING THE ELECTRICAL SOLVER

Very big steps in the band gap

Big steps in the band gap will produce very small and very large carrier densities - see Avoiding
very big and very small numbers above.

8.8.2 Simulating disordered devices without traps

This section needs to be rewritten, to more generally talk about recombination and not just
Langevin recombination. For a more complete view watch the video below

Related YouTube videos:

Please stop simulating disordered semiconductors without trap states.

In my view Langevin recombination is in general a really bad way to describe recombination
in OPV devices. This is because the mechanism assumes Brownian motion of electrons and
holes and that charge carriers of opposite polarity will recombine when they get close enough
to fall into each others electrostatic field. This picture assumes the charge carriers are free
and completely neglects the influence of trap states. I therefore think Langeving recombination
should be avoided in OPVs. But in dx.doi.org/10.1021/jp200234m you used Langevin recom-
bination - why?: In this paper I allowed the mobility in the Langevin expression to vary as a
function of carrier density i.e.

Rfree = qkr
(αµe(n) + βµh(n))ntotptot

2ε0εr
(8.28)

I then by defining a mobility edge and assuming any carrier below the mobility edge could
not move and any carrier above it could. I could define the averaged electron/hole mobility as:

µe(n) =
µ0
enfree

nfree + ntrap

(8.29)

and

µh(n) =
µ0
hpfree

pfree + ptrap
(8.30)

and if one assumes the density of free charge carriers is much smaller than the density of
trapped charge carriers one can arrive at

R(n, p) = qkr
(αµ0

enfreeptrap + βµhpfreentrap)

2ε0εr
(8.31)

Thus by making the mobility carrier density dependent we arrive at an expression for
Langeving recombination that’s dependent upon the density of free and trapped carriers (i.e.
nfreeptrap and pfreentrap) This is in principle the same as SRH recombination (i.e. a process
involving free electrons (holes) recombining with trapped holes (electrons)). This was a nice
simple approach and it worked quite well in the steady state. However, to make this all work I
had to assume all electrons (holes) at any given position in space had a single quasi-Fermi level,
which meant they were all in equilibrium with each other. For this to be true, all electrons
(holes) would have to be able to exchange energy with all other electrons (holes) at that position
in space and have an infinite charge carrier thermalization velocity. This seemed like an OK
assumption in steady state when electrons (holes) had time to exchange energy, however once
we start thinking about things happening in time domain, it becomes harder to justify because

https://www.youtube.com/watch?v=2EHfulz7UDU


CHAPTER 8. THEORY OF DRIFT DIFFUSION MODELLING

there are so many trap states in the device it is unlikely that charge carriers will be able to act as
one equilibrated gas with one quasi-Fermi level. On the other hand the SRH mechanism does
not make this assumption, so it is probably a better description of recombination/trapping.
I would also add that I have never found a situation in OPV device modeling where SRH
recombination was unable to describe the device in question. Conclusion: SRH is better than
Langevin.

8.9 Calculating the built in potential

The first step to performing a device simulation, is to calculate the built in potential of the
device. To do this we must know the following things:

� The majority carrier concentrations on the contacts n and p.

� The effective densities of states NLUMO and NHOMO.

� The effective band gap Eg

Figure 8.2: Band structure of device in equilibrium.

The left hand side of the device is given a reference potential of 0 V. See figure 8.2. We can
then write the energy of the LUMO and HOMO on the left hand side of the device as:

ELUMO = −χ (8.32)

EHOMO = −χ− Eg (8.33)

For the left hand side of the device, we can use Maxwell-Boltzmann statistics to calculate
the equilibrium Fermi-level (Fi).

pl = Nvexp

(
EHOMO − Fp

kT

)
(8.34)

We can then calculate the minority carrier concentration on the left hand side using Fi

nl = Ncexp

(
Fn − ELUMO

kT

)
(8.35)



8.9. CALCULATING THE BUILT IN POTENTIAL

The Fermi-level must be flat across the entire device because it is in equilibrium. However
we know there is a built in potential, we can therefore write the potential of the conduction
and valance band on the right hand side of the device in terms of phi to take account of the
built in potential.

ELUMO = −χ− qφ (8.36)

EHOMO = −χ− Eg − qφ (8.37)

we can now calculate the potential using

nr = Ncexp

(
Fn − ELUMO

kT

)
(8.38)

equation 8.36.
The minority concentration on the right hand side can now also be calculated using.

pr = Nvexp

(
Ev − FHOMO

kT

)
(8.39)

The result of this calculation is that we now know the built in potential and minority carrier
concentrations on both sides of the device. Note, infinite recombination velocity on the contacts
is assumed. I have not included finite recombination velocities in the model simply because
they would add four more fitting parameters and in my experience I have never needed to use
them to fit any experimental data I have come across.

Once this calculation has been performed, we can estimate the potential profile between the
left and right hand side of the device, using a linear approximation. From this the charge carrier
densities across the device can be guessed. The guess for potential and carrier densities, is then
used to prime the main Newton solver. Where the real value are calculated. The Newton solver
is described in the next section.

8.9.1 Average free carrier mobility

In this model there are two types of electrons (holes), free electrons (holes) and trapped electrons
(holes). Free electrons (holes) have a finite mobility of µ0

e (µ0
h) and trapped electrons (holes)

can not move at all and have a mobility of zero. To calculate the average mobility we take the
ratio of free to trapped carriers and multiply it by the free carrier mobility.:

µe(n) =
µ0
enfree

nfree + ntrap

(8.40)

Thus if all carriers were free, the average mobility would be µ0
e and if all carriers were

trapped the average mobility would be 0. It should be noted that only µ0
e (µ0

h) are used in the
model for computation and µe(n) is an output parameter.

The value of µ0
e (µ0

h) is an input parameter to the model. This can be edited in the electrical
parameter editor. The value of µe(n), and µh(p) are output parameters from the model. The
value of µe(n), and µh(p) change as a function of position, within the device, as the number
of both free and trapped charge carriers change as a function of position. The values of µe(x),
and µh(x) can be found in mu n ft.dat and mu p ft.dat within the snapshots directory. The
spatially averaged value of mobility, as a function of time or voltage can be found in the files
dynamic mue.dat or dynamic muh.dat within the dynamic directory.

Were one to try to measure mobility using a technique such as CELIV or ToF, one would
expect to get a value closer to µe(n) or µh(p) rather than closer to µ0

e or µ0
h. It should be



CHAPTER 8. THEORY OF DRIFT DIFFUSION MODELLING

noted however, that measuring mobility in disordered materials is a difficult thing to do, and
one will get a different experimental value of mobility depending upon which experimental
measurement method one uses, furthermore, mobility will change depending upon the charge
density profile within the device, and thus upon the applied voltage and light intensity. To
better understand this, try for example doing a CELIV simulation, and plotting µe(n) as a
function of time (Voltage). You will see that mobility reduces as the negative voltage ramp
is applied, this is because carriers are being sucked out of the device. Then try extracting
the mobility from the transient using the CELIV equation for extracting mobility. Firstly, the
CELIV equation will give you one value of mobility, which is a simplification of reality as the
value really changes during the application of the voltage ramp. Secondly, the value you get
from the equation will almost certainly not match either µ0

e or any value of µe(n). This simply
highlights, the difficult of measuring a value of mobility for a disordered semiconductor and
that really when we quote a value of mobility for a disordered material, it really only makes
sense to quote a value measured under the conditions a material will be used. For example, for
a solar cell, values of µe(n) and µh(n), would be most useful to know under 1 Sun at the Pmax

point on a JV curve.



8.10.

8.10

There are three options for thermal simulation in OghmaNano; 1) A constant temperature
through the device. This is recommended for most simulation and is set at 300K by default;
2) a lattice thermal solver 9.1.1, this solves the heat equation throughout the device taking
into account self heating. This is useful for simulating devices which get hot through their
operation; 3) A hydrodynamic thermal 9.1.2 solver which does not assume the electron, hole
and lattice temperatures are equal. This is useful for simulating heat flow over heterojunctions
or where carriers do not have time to relax to the lattice temperature.

The drift diffusion equations given in 8.20 and 8.24 are only valid in isothermal conditions.
The full transport equations as derived from the BTE [12] are given by

Jn = µen∇Ec +
2

3
µen∇W̄ +

2

3
W̄µe∇n− µenW̄

∇m∗e
m∗e

(8.41)

Jp = µhp∇Ev −
2

3
µhp∇W̄ −

2

3
W̄µh∇p+ µppW̄

∇m∗h
m∗h

(8.42)

where W̄ is the average kinetic energy of the free carriers as given by 8.10. If the average
energy is assumed to be 3/2kT, 9.1 and 9.2, return to the standard drift diffusion equations.
Note the full form of these equations is required when not using MB statistics.

The thermal model can be configured in the thermal ribbon 9.1. Usually the thermal model
is turned off and a constant temperature (300K) is assumed across the device. If you wish to
adjust this temperature click on the ”Set temperature icon”. The thermal model can be turned
on by clicking on the candle to the on the far left of the thermal ribbon, so that a flame appears.
Various heating sources can be enabled or disabled by depressing the buttons to the right of
the ribbon. Boundary conditions can be set in the ”Boundary Conditions” window, thermal
constants of the material layers can be changed in the ”Thermal parameters window”.

Figure 8.3: Thermal

8.10.1 Lattice thermal model

When solving only the lattice heat equation heat transfer and generation is given by

0 = ∇κl∇TL +Hj +Hr +Hoptical +Hshunt (8.43)

where joule heating (Hj) is give by

Hj = Jn
∇Ec

q
+ Jh

∇Eh

q
, (8.44)

recombination heating (Hr) is given by,

Hr = R(Ec − Ev) (8.45)

optical absorption heating is given by,



CHAPTER 8. THEORY OF DRIFT DIFFUSION MODELLING

Hoptical (8.46)

and heating due to the shunt resistance is given by

Hshunt =
JshuntVapplied

d
. (8.47)

The thickness of the device is given by d. Note shunt heating is only in there to conserve
energy conservation.

8.10.2 Energy balance - hydrodynamic transport model

If you turn on the electrical and hole thermal model, then the heat source term will be replaced
by

H =
3kb
2

(
n(
Tn − Tl
τe

) + p(
Tp − Tl
τh

)

)
+R(Ec − Ev) (8.48)

and the energy transport equation for electrons

Sn = −κn
dTn
dx
− 5

2

kbTn
q

Jn (8.49)

and holes,

Sp = −κp
dTp
dx

+
5

2

kbTp
q
Jp (8.50)

will be solved.
The energy balance equations will also be solved for electrons,

dSn

dx
=

1

q

dEc

dx
Jn −

3kb
2

(
RTn + n(

Tn − Tl
τe

)

)
(8.51)

and for holes

dSp

dx
=

1

q

dEv

dx
Jp −

3kb
2

(
RTp + n(

Tp − Tl
τe

)

)
(8.52)

The thermal conductivity of the electron gas is given by

κn =

(
5

2
+ cn

)
kb

2

q
Tnµnn (8.53)

and for holes as,

κp =

(
5

2
+ cp

)
kb

2

q
Tpµpp (8.54)



Chapter 9

Optical models

9.1

There are three options for thermal simulation in OghmaNano; 1) A constant temperature
through the device. This is recommended for most simulation and is set at 300K by default;
2) a lattice thermal solver 9.1.1, this solves the heat equation throughout the device taking
into account self heating. This is useful for simulating devices which get hot through their
operation; 3) A hydrodynamic thermal 9.1.2 solver which does not assume the electron, hole
and lattice temperatures are equal. This is useful for simulating heat flow over heterojunctions
or where carriers do not have time to relax to the lattice temperature.

The drift diffusion equations given in 8.20 and 8.24 are only valid in isothermal conditions.
The full transport equations as derived from the BTE [12] are given by

Jn = µen∇Ec +
2

3
µen∇W̄ +

2

3
W̄µe∇n− µenW̄

∇m∗e
m∗e

(9.1)

Jp = µhp∇Ev −
2

3
µhp∇W̄ −

2

3
W̄µh∇p+ µppW̄

∇m∗h
m∗h

(9.2)

where W̄ is the average kinetic energy of the free carriers as given by 8.10. If the average
energy is assumed to be 3/2kT, 9.1 and 9.2, return to the standard drift diffusion equations.
Note the full form of these equations is required when not using MB statistics.

The thermal model can be configured in the thermal ribbon 9.1. Usually the thermal model
is turned off and a constant temperature (300K) is assumed across the device. If you wish to
adjust this temperature click on the ”Set temperature icon”. The thermal model can be turned
on by clicking on the candle to the on the far left of the thermal ribbon, so that a flame appears.
Various heating sources can be enabled or disabled by depressing the buttons to the right of
the ribbon. Boundary conditions can be set in the ”Boundary Conditions” window, thermal
constants of the material layers can be changed in the ”Thermal parameters window”.

Figure 9.1: Thermal



CHAPTER 9. OPTICAL MODELS

9.1.1 Lattice thermal model

When solving only the lattice heat equation heat transfer and generation is given by

0 = ∇κl∇TL +Hj +Hr +Hoptical +Hshunt (9.3)

where joule heating (Hj) is give by

Hj = Jn
∇Ec

q
+ Jh

∇Eh

q
, (9.4)

recombination heating (Hr) is given by,

Hr = R(Ec − Ev) (9.5)

optical absorption heating is given by,

Hoptical (9.6)

and heating due to the shunt resistance is given by

Hshunt =
JshuntVapplied

d
. (9.7)

The thickness of the device is given by d. Note shunt heating is only in there to conserve
energy conservation.

9.1.2 Energy balance - hydrodynamic transport model

If you turn on the electrical and hole thermal model, then the heat source term will be replaced
by

H =
3kb
2

(
n(
Tn − Tl
τe

) + p(
Tp − Tl
τh

)

)
+R(Ec − Ev) (9.8)

and the energy transport equation for electrons

Sn = −κn
dTn
dx
− 5

2

kbTn
q

Jn (9.9)

and holes,

Sp = −κp
dTp
dx

+
5

2

kbTp
q
Jp (9.10)

will be solved.
The energy balance equations will also be solved for electrons,

dSn

dx
=

1

q

dEc

dx
Jn −

3kb
2

(
RTn + n(

Tn − Tl
τe

)

)
(9.11)

and for holes

dSp

dx
=

1

q

dEv

dx
Jp −

3kb
2

(
RTp + n(

Tp − Tl
τe

)

)
(9.12)

The thermal conductivity of the electron gas is given by



9.1.

κn =

(
5

2
+ cn

)
kb

2

q
Tnµnn (9.13)

and for holes as,

κp =

(
5

2
+ cp

)
kb

2

q
Tpµpp (9.14)



CHAPTER 9. OPTICAL MODELS

9.1.3 Ray tracing model

Add text.



Chapter 10

Simple circuit simulations

OghmaNano was primarally designed as a tool to perform detailed device simulations, however
sometimes one does not need a full device simulation to understand what is happening in your
device. On some occasions a simple circuit model comprising of resistors, capacitors, and ideal
diodes will do. For these occasions OghmaNano includes an electrical circuit solver. The circuit
solver is a drop in replacement for the drift diffusion solver in that the voltages applied to it
are defined in exactly defined in exactly the same way, the experimental modes such as time
domain, frequency domain and EQE all work with the circuit solver. Furthermore, the transfer
matrix model which is used to calculate how much light is absorbed in each layer can connected
to the diodes, thus enabling photocurrent to be correctly simulated. There are a few examples
if circuit simulations in the mode, these can be found in the Simple Diode Model folder of the
new simulation folder (see figure 10.1.).

Figure 10.1: Selecting the Simple circuit simu-
lation example

Figure 10.2: Selecting the example that gener-
ates the JV curve

With in this folder there are a few example circuit simulations (see Figure 10.2).
If one opens the OPV PM6:Y6 JV curve one will get a simulation that looks just like other

simulations in OghmaNano (see Figure 10.2), however this simulation has another tab called
circuit diagram in the main window, if one clicks it one should see a circuit diagram as show
in Figure 10.4. This is the circuit diagram editor. On the left is a toolbar, from the top the
toolbar provides the following functionality:

� Resistor: This adds a resistor to the circuit.

� Capacitor: This adds a capacitor to the circuit.

� Diode: This adds a standard diode to the circuit of form i(t, V ) = I0(e
qV
nkT − 1) − Ilight,

Ilight is taken from the optical simulations.



CHAPTER 10. SIMPLE CIRCUIT SIMULATIONS

� Non-linear element: This adds a non-linear circuit element of form i(t, V ) = I0∗V
V0+d

m

� Wire: A perfect wire with no parasitic parameters.

� Earth: This acts as a ground set at 0V.

� Battery: This applies the voltage to the circuit. The voltage is taken from the contact
marked change in the contact editor.

� Pointer: This ise used to select and edit circuit elements.

� Brush: This is used to delete circuit elements.

Figure 10.3: The usual interface opens when the
circuit simulation is selected.

Figure 10.4: The circuit tab of the example
showing the circuit diagram used to simulate
the device.

By clicking on any circuit element with any tool apart from the brush, you can change the
values of the components as seen in Figure 10.5, and zoomed in Figure 10.6. Figure 10.6 shows
the configuration window for the diode component. From the top the options are:

� Component: This can be used to change what component the circuit element represents.

� Name: This is an human readable name given to the circuit element, you can call it what
you want.

� Ideality factor: The diode ideality factor n.

� I0: Saturation current in the diode equation.

� Layer: This is the layer that the diode represents, the light current will be calculated
from the generation in this layer.



Figure 10.7: The output of circuit simulation window is exactly as it would be for standard
drift diffusion simulations.

Figure 10.5: Editing the component values of a
diode.

Figure 10.6: A zoomed in view of the diode com-
ponent editor. Access this menu by clicking on
a component.

After you have run the simulation by clicking the play button or by pressing F9, simulation
output will be visible in the output tab as usual. All the files you would expect from the usual
drift diffusion simulations will be generated. One extra output that is generated in the circuit
simulation is the Net list this is visible in Figure 10.8, when you double click on this it brings
up the Net list window which is visible in Figure 10.8, this shows the voltage over and current
through every component in the circuit. You can use the slider to step through the simulation
steps, these will be time or voltage steps. The net list is only generated when the simulation
output is set to Write everything to disk in the simulation editor.



CHAPTER 10. SIMPLE CIRCUIT SIMULATIONS

Figure 10.8: The net list, showing the voltages over components and currents through compo-
nents.

10.0.1 JV, IS, CV and other simulation modes

As mentioned above the circuit simulator is compatible all simulation modes in OghmaNano,
by switching the simulation mode to Impedance Spectroscopy one can simulate the frequency
response of the circuit (see Figure 10.9), the result of which can be seen in Figure 10.10 where
the file real imag.csv has been plotted.

Figure 10.9: Changing the simulation mode to impedance spectroscopy.



Figure 10.10: An impedance spectroscopy simulation performed using the above circuit. To do
this just change the simulation mode to IS.

10.0.2 Using the fitting/scan tools with circuit models

The circuit models are exposed in the json tree just like the drift diffusion material paramters
and therefore you can also use the fitting and scan tools to either fit the data to experiment or
to scan through circuit values.



Chapter 11

Large area device simulation

OghmaNano primarily focuses on drift diffusion modelling of small area device such as solar cells
and OFETs. Drift and diffusion simulations are good at describing the microscopic operation
of devices. They allow you to understand how carriers, potential and recombination interact
on the nanometer scale. However, sometimes one wants to simulate large area devices such
as printed substrates spanning over many square centimetres. For this type of simulation one
needs to use less detailed and more efficient circuit models, this section describes how to do
that.

Related YouTube videos:

Tutorial on designing large area contacts for flexible electronics

Understanding Printed Hexagonal Contacts for Large Area Solar Cells

11.1 Designing contacts for large area devices

A common problem is designing large area contacts for solar cells. This paper [13] gives an
overview of such a problem. To start designing large area contacts open the new simulation
window in the file ribbon, and select the Large area hexagonal contact simulation (see figure
11.1). Once you have opened it you should get a window which looks like figure 11.2. This
simulation consists for a hexagonal solver contact printed on top of a PEDOT substrate. We
are going to find out how the resistance of this contact varies as a function of position.

https://www.youtube.com/watch?v=XpGr9C_gr7E
https://www.youtube.com/watch?v=ObBJIE9TmYo


11.1. DESIGNING CONTACTS FOR LARGE AREA DEVICES

Figure 11.1: Selecting the large area contact simulation



CHAPTER 11. LARGE AREA DEVICE SIMULATION

Figure 11.2: A 3D image of the contact printed contact.

The next step in the simulation is to build a network of resistors which approximates the
shape of the contact. To do this select the Circuit diagram tab and then click the refresh
button. This will build a resistor network of the shape shown in the device structure tab, see
figure 11.3. Here you can zoom in and examine the individual resistors, each line represents a
resistor.



11.1. DESIGNING CONTACTS FOR LARGE AREA DEVICES

Figure 11.3: Building the 3D circuit mesh of the contact structure.

Once this is built we can run a full simulation and calculate the resistance between the
bottom of the PEDOT:PSS layer (bottom of the green layer in figure 11.2) and the extracting
silver contact (far left yellow strip on the top of figure 11.2). Run the simulation by clicking on
the play button in the file ribbon.

Figure 11.4: A 1D diagram of the mesh



CHAPTER 11. LARGE AREA DEVICE SIMULATION

The simulation may take a while to run, once it has finished you can open the output files in
the Output tab, see figure ??. If you open the file called spm R.dat it will show you a resistance
map of the structure which can be seen in figure 11.5. Other output files are listed below in
table 11.1.

Figure 11.5: A 2D resistance plot across the surface of the device.

File name Description
spm R.dat 2D plot of resistance
spm R x.dat A resistance plot down the centre of the device.

Table 11.1: Files produced by the SPM simulaton.



11.2. SIMULATING LARGE AREA SOLAR CELLS

Figure 11.6: A 1D resistance plot taken through the centre of the device.

The scanning probe microscopy editor can be found in the Simulation Editors ribbon in the
main window. This can be used to select if one scans the entire device or only section of it.
The editor can be seen in figure 11.7

Figure 11.7: The output files from the simulation.

11.2 Simulating large area solar cells



Chapter 12

Modelling excitons/geminate
recombination - organics only

12.1 Why you should not model excitons

There are a number of models to calculate the number of geminate pairs which get converted to
free charge carriers the Onsager-Braun model for example will give you the exciton dissociation
efficiency. There are other models which will enable you to calculate the distribution of excitons
in a device as a function of position. However, these models will generally require a number
of parameters which are often not reliably known for a material system. Such parameters
include exciton life-time, diffusion length and dissociation rate. So although it’s possible (and
interesting) to write a model to simulate geminate recombination, one is usually better off
simply introducing a photon efficiency factor ηphoton. This number ranges between 0.0 and 1.0
and is multiplied by the number of photons absorbed at any point in the device to account for
geminate recombination losses.

G = Gabs · ηphoton (12.1)

where G is the charge carrier generation rate in m−3s−1 in equations 12.1 and 8.25.

This factor can be obtained to a reasonable degree by comparing the difference between
the simulated and experimental Jsc. This parameter can set in the configuration section of the
optical simulation window. So therefore my advice is that in most cases you should not be
modelling excitons explicitly but rather using the ’photon efficiency factor’. If you really want
to model excitons read on..

12.2 Modelling excitons

So if you have read section 12.1 and still think you want to model excitons this section will
explain how to do it. Gvpdm includes an exciton solver. This sits between the optical model
and electrical model. If the exciton model is turned off then generation is simply the number
of photons absorbed at any point in the device multiplied by the photon efficiency factor see
equation 12.1. If the exciton model is turned on then optical absorption will feed straight into
the exciton diffusion equation.

∂X

∂t
= ∇ ·D∇X +Goptical − kdisX − kFRETX − kPLX − αX2. (12.2)

where X is the exciton density as a function of position, D is the diffusion constant, Goptical

exciton generation rate. This value is taken straight from the optical model. The constant kdis



12.3. MODELING EXCITIONS IN A DEVICE

is exciton dissociation rate to free charge carriers. When the exciton model is switched on G in
equations equals kdisX. kFRET is the Föster resonance energy transfer, kPLX is the radiative
loss and α is an exciton-exciton annihilation rate constant. The diffusion term is defined as

D =
L2

τ
(12.3)

Where L is exciton diffusion length and τ is the exciton lifetime.

12.3 Modeling excitions in a device

12.4 Modeling excitions in a unit cell



Chapter 13

The oghma file format

13.1 the .oghma simulation file format

In OghamNano simulations are saved in a directory containing a sim.oghma file. All the pa-
rameters specifying the device and simulations are stored in the sim.oghma file. If you rename
the file so to be called sim.zip you will be able to open it in windows explorer or your favourite
zip viewer. Inside the .oghma file you will find another file called sim.json. You can view this
file in any text editor but the file is quite long so I recommend you use firefox as it has a
very nice built in json viewer. Json is a simple way of storing text and configuration infor-
mation first developed for Java. Json is a standard way to store and transmit data much like
XML. You can see examples here: https://json.org/example.html or below in code listing 1.

You can see the json file is structured using
a series of brackets, double quotes and com-
mas. If you make a copy of sim.json outside
the .oghma archive, then rename the sim.zip
back to sim.oghma, OghmaNano will ignore the
sim.json file within the sim.oghma archive and
revert to the plain text file stored in the sim-
ulation directory. This feature can be useful
for automation of simulations as you can sim-
ply edit the sim.json file using your favourite
programming language without having to learn
about reading and writing zip files. If you open
the sim.json file in firefox it will look like 13.2.
Also have a look at the file in notepad to get a
sense of what is in it.

1 {

2 "color_of_dog": "brown",

3 "dog_age": 5,

4 "dogs_toys": {

5 "rabbit": "True",

6 "stick": "False"

7 }

8

9 }

Figure 13.1: A simple JSON example

You can see that the json file has various headings, key headings are listed below in table
13.1. If you wish to programmatically drive OghmaNano you can simply use one of the many
available json editors most languages have them freely available.

13.2 Qwerks of the OghmaNano json format

� The OghmaNano json file does not support standard json lists e.g. [”Red”, ”Green”,
”Blue”]. If there is a list of items, it is defined by firstly declaring the variable segments,
with the number of items in the list so for example ”segments”,0 . Each item in the list
is then stored under, ”segment0”, ”segment1” etc... This format enables OghmaNano to
allocate the memory for reading in the structures before doing the reading. This can be

https://json.org/example.html


13.2. QWERKS OF THE OGHMANANO JSON FORMAT

Figure 13.2: An example sim.json file opened in Firefox.



CHAPTER 13. THE OGHMA FILE FORMAT

Heading Description
sim General simulation information
jv JV curve configuration

dump Defines how much information is written to disk
math Math configuration for the solver
light Optical transfer matrix configuration

light sources Configuration of light sources
epitaxy Defines the structure of the device
thermal Thermal configuration

thermal boundary Thermal boundary config.
exciton Exciton config

exciton boundary Exciton boundary config.
ray Ray tracing config.

suns voc Suns-Voc
suns jsc Suns-Jsc

ce Charge Extraction config.
transfer matrix Light transfer matrix config

pl ss PL in steady state
eqe EQE config.
fdtd FDTD config.
fits Fitting config.

mesh Electrical mesh config.
time domain Time domain config.
fx domain FX-domain config

cv CV config.
parasitic Parasitic components

spm Scanning Probe Microscopy config.
hard limit Setting hard limits for sim params.
perovskite Perovskite solver config.

electrical solver Electrical solver config.
spctral2 SPCTRAL2
lasers fs Lasers
circuit Circuit solver config.

gl OpenGL config
world Defines the world box

Table 13.1: Key headings/sections in the sim.json file.



13.3. ENCODING

seen in figure 13.2 where there is a list with 1 segment.

� Many items in the json file will be given an ID number which is a 16 digit hex code, this
can be used to uniquely reference the item. An ID number can also be seen in figure 13.2.
These ID numbers are generated at random but every ID number must be unique. ID
numbers enable objects for example epitaxy layers to be identified uniquely even if they
have the same name.

13.3 Encoding

The .json files read/written by OghamNano are always stored in UTF-8 format. OghmaNano
can not handle UTF-16 or any other text encoding standards. Nowadays windows notepad
and most other apps default to UTF-8, so if you don’t know what these text storage formats
are it probably does not matter. This will only rear it’s head if you start programmatically
generating .oghma files in a language such as C++ and are using a language such as Chinese
or Russian with non Latin characters in it’s alphabet.

13.4 Forwards/backwards compatability of the file for-

mat

Significant effort is made to make sure new versions of OghmaNano can read files generated in
older versions. However, older versions of OghmaNano may not be able to read files generated
on newer versions. Every time the user opens a sim.oghma file using the GUI the file format
is checked and if it differs to that being used in the current version the file is updated and
written back to disk. If you are using OghmaNano in a headless configuration by calling
oghma core.exe directly, then when sim.oghma files from old versions of the model, before
running oghma core.exe, make sure you have opened it in the GUI first to make sure the file
is in the correct format.

https://en.wikipedia.org/wiki/UTF-8


Chapter 14

Databases

There are a series of databases used to define material parameters, shapes, emission spectra and
solar spectra etc... These are described within this section. From the graphical user interface
they can be accessed from the database ribbon, see figure 14.1.

Figure 14.1: The database ribbon

There are two copies of these databases, one copy in the install directory of OghmaNanoC:\Program
Files\OghmaNano\ and one in your home directory in a folder called OghmaNano local. When
the model starts for the first time it copies the read only materials database from, to the Ogh-
maNano local folder in your home directory. If you delete the copy of the materials database
in the OghmaNano local folder it will get copied back next time you start the model, this way
you can always revert to the original databases if you damage the copy in OghmaNano local.

The structure of the databases are simple, they are a series of directories with one directory
dedicated to each material or spectra etc.. E.g. there will be one directory called Ag in the
optical database which defines silver, and another directory in the spectra database called
am1.5g which defines the solar spectrum. Each of these database directories will from now
on be referred to an object. Within each object there is a data.json file which defines basic
material properties and configuration information. There will may be a couple of .bib files
which contain reference information for the object in bibtex format and either .gmat files for
n/k spectral data or .inp files for other types of data. All these files are just human readable
text files, so you can open them in your preferred text editor such as notepad.



14.1. MATERIALS DATABASE

14.1 Materials database

Related YouTube videos:

A tutorial on adding new materials to gvpdm

This database primarily contains n/k data but also contains some electrical information and
thermal information. Each subdirectory within the materials database identifies the material
name. In each sub directory there are two key files alpha.gmat and n.gmat, these files are
standard text files can be opened with any text editor such as wordpad. Alpha.gmat contains
the absorption coefficient of the material while n.gmat contains the the refractive index. The
first column of the file contains the wavelength in m (not cm or nm), and the second column
of the file contains the absorption coefficient in m−1 (for alpha.omat) and the real part of the
refractive index (i.e. n) in au (for n.omat). The data.json defines the material color and any
known electrical or thermal data.

14.2 Adding new materials - the hard way

If you wish to add materials to the database which do not come as standard with the model
you can do it in the following way: Simply copy an existing material directory (say Ogh-
maNano local\oxieds\ito) to a new directory (say OghmaNano local\oxieds\mynewmaterial).
Then replace alpha.gmat and n.gmat with your data for the new material. You can ignore the
data.json file, although if you know the energy levels you can add the values in the file.

If you don’t have data to hand for your material, but you do have a paper containing the
data, you use the program Engauge Digitizer, written by Mark Mitchell https://github.

com/markummitchell/engauge-digitizer to export data from publications. After you have
finished updating the new material directory, whenever a new simulation is generated the new
material files will automatically be copied into the active simulation directory ready for use.

14.3 Adding new materials - the easy way

To add a new material go to the data base ribbon and click on Materials database as shown in
figure 14.2.

Figure 14.2: Opening the materials database

Then click add material in the top right of the window, this will bring up a dialogue box
which will ask you to give a name for your new material, this is visible in figure 14.4.

https://www.youtube.com/watch?v=0u6_jRVhZwU
https://github.com/markummitchell/engauge-digitizer
https://github.com/markummitchell/engauge-digitizer


CHAPTER 14. DATABASES

Figure 14.3: Select Add material

Figure 14.4: Type the name of the new material

Figure 14.5: Open the new material



14.3. ADDING NEW MATERIALS - THE EASY WAY

Figure 14.6: The new material without any data

Figure 14.7: The data importer window



CHAPTER 14. DATABASES

Figure 14.8: Clockwise from the top left; The imported absorption sepctrum; The basic material
parameters; The electrical parameters; and the Thermal parameters.



14.4. EMISSION DATABASE

14.4 Emission database

This contains emission spectra for OLED materials.



CHAPTER 14. DATABASES

14.5 Shape database

All physical objects within a simulation are shapes. For example the following things are all
shapes; a layer of a solar cell; a layer of an OLED; a lens; a complex photonic crystal structure;
contact stripe on an OFET; the complex hexagonal contact on a large area device (see figure
1.2 for more examples). These shapes are defined using triangular meshes for example a box
which is used to define layers of solar cells, and layers of LEDs is defined using 12 triangles,
two for each side. This box structure can be seen in figure 14.9.

Figure 14.9: the box shape.

Shapes are stored in the shape database, this can be accessed via the database ribbon and
clicking on the Shapes icon, see figure 14.10. By clicking on the shape database icon the shape
database window can be brought up see figure 14.11.

Figure 14.10: Opening the shape database



14.5. SHAPE DATABASE

Figure 14.11: The shape database window

Try opening some of the shapes and have a look at them. You will get a window much like
that shown in figure 14.12. Figure 14.12 shows a honeycomb contact structure of a solar cell.
On the left of the window is the 3D shape, and on the right of the window is the 2D image
which was used to generate it. Overlaid on the 2D image is a zx projection of the 3D mesh.
The process of generating a shape involves first defining a 2D png image which you want to
turn into a shape, in this case the 2D image is a series of hexagons and a bar at the top. This
image is then converted into a triangular mesh using a discretization algorithm.



CHAPTER 14. DATABASES

Figure 14.12: An example of a shape generated from a 2D png image. The 3D shape repre-
senting a hexagonal contact from a solar cell is on the left of the figure while the original 2D
image is on the right.

Now try opening the shape morphology/1 and you should see a window such as the one
shown in figure 14.13, in the file ribbon find the icon which says show mesh. Try toggling it
of and on, you will see the 2D mesh become hidden and then visible again. This example is
a simulated bulk heterojunction morphology, but you can turn any 2D image into a shape by
using the load new image button in the file ribbon. Try opening the mesh editor by clicking on
Edit Mesh the file ribbon, you should get a window looking like figure 14.14. This configure
window has three main options x-triangles, y-triangles and method. The values in x-triangles,
y-triangles determine the maximum number of triangles used to discretize the image on the x
and y axis. Try reducing the numbers to 40 then click on Build mesh in the file ribbon.



14.5. SHAPE DATABASE

Figure 14.13: Clockwise from the top left; The imported absorption sepctrum; The basic
material parameters; The electrical parameters; and the Thermal parameters.

You will see that the number of triangles used to describe the image reduce. The more
triangles that are used to describe the shape the more accurately the shape can be reproduced,
however the more triangles are used the more memory a shape will take up and the slower
simulations will run. There is always a trade off between number of triangles used to discretize
a shape. Try going back to the Edit Mesh window and set method to no reduce and then click
on Build mesh from the file menu again. You will see that the complex triangular mesh as
been replaced by a periodic triangular mesh, which is more accurate but requires the full 70x70
triangles. The difference between the no reduce and Node reduce options are that no reduce
simply uses a regular mesh to describe and object and Node reduce starts off with a regular
mesh then uses a node reduction algorithm to minimize the number of triangles used in the
mesh.

Figure 14.14: The mesh editor window, accessed via the file ribbon.

As well as loading images from file, the shape editor can generate it’s own images for
standard objects used in science, the 2D image ribbon is visible in the right hand panel of
figure 14.13. There are options to generate lenses, honeycomb structures and photonic crystals.



CHAPTER 14. DATABASES

Each button has a drop down menu to the right of it which can be used to configure exactly
what shape is generated.

The final ribbon to be discussed is the Filters ribbon. This is used to change loaded images,
try turning on and off the threshold function. This applies a threshold to an image so that
RGB values above a given value are set to white and those below are set to black. There are
also other functions such as Blur, and Boundary which can be used to blur and image and
apply boundaries to an image.

Figure 14.15: The shape database

14.5.1 The shape file format

A shape has to be a fully enclosed volume, if you use the built in shape discretizer this will be
done for you automaticity. However if you are building shapes by hand you will have to enforce
this condition. Each shape directory contains the following files

File name Description
data.json Holds the configuration for the shape file

image original.png backup of the imported image
image out.png The final processed image
image.png The imported image which may be modified.
shape.inp The discretized 3D structure.

Table 14.1: The files within a shape directory

The png files are of images in various states of modification. The data.json file stores the
configuration of the shape editor and the shape.inp file contains the 3D structure of the object.
An example of a shape.inp file is shown below in 14.16. The file format has been written so that
gnuplot can open it using the splot command without any modification. As such each triangle
is comprised of four z,x,y points (lines 21-24), the first three lines define the triangle, and the
forth line is a repeat of the first line so that gnuplot can plot the triangle nicely. The number



14.5. SHAPE DATABASE

of triangles in the file is defined on line 18 using the #y command. The exact magnitudes of
the z,x,y values do not matter because as soon as the shape is loaded all values are normalized
so that the minimum point of the shape sits at 0,0,0 and the maximum point from the origin
sits at 1,1,1. When being inserted into a scene, the shape is then again renormalized to the
desired size of the object in the device.

Figure 14.16: An example of the shape.inp file.



CHAPTER 14. DATABASES

14.6 Filters database

This contains optical filters.



14.7. BACKUPS OF SIMULATIONS

14.7 Backups of simulations

Very often when running a simulation you want to make a copy of it before continuing to play
with the parameters. To do this click on the backup simulation button in the database ribbon
(see figure 14.1), this will bring up the backup window, see figure 14.17. If you click on the
”New backup” icon on the top right of the window, a backup will be made of your current
simulation. And an icon representing the backup will appear in the backup window. To restore
the backup double click on the icon representing your stored simulation. Note this backup
is only stored in the your local simulation directory, and is more of a checkpoint than a real
backup.... so make sure you have other copies of your simulation if it is very important to you..

Figure 14.17: Backing up a simulation



Chapter 15

Fitting experimental data

Related YouTube videos:

Advanced topics in fitting of JV curves to experimental data using OghmaNano.

Fitting transient photocurrent (TPC) and light JV curves using OghmaNano

Fitting the light JV curve of an ultra large area (2.5meter x 1cm) OPV device using OghmaNano

In the same way you can fit the diode equation to a dark curve of a solar cell to extract
the ideality factor, OghmaNano can be fitted to experimental data using the fitting function.
Fitting is a good way to extract physical parameters from a device such as mobility, destiny of
trap states etc. The advantage of fitting a complex model such as OghmaNano to data rather
than simplistic analytical equations is that far more detailed information can be extracted and
a better physical picture of the underlying physics obtained. This section gives an overview of
the fitting tools in OghamNano.

15.1 Key tips and tricks

� Generally speaking fitting is tricky process requiring a lot of patience and manual fine
tuning to get it to work. Don’t expect to click a button and for it to just work. You will
have to work to get nice fits.

� If the fit is not working something may be wrong with the physical assumptions you have
made with your device. The model will only fit physically reasonable data so if something
is off by and order of magnitude go back and think again about what you are asking the
model to do.

� Different data sets provide different types of information. For example the dark JV curve
of a solar cell provides information about the shunt resistance, the series resistance, and
some information about mobility and recombination/tale states. However, the light JV
curve provides almost no information about the shunt resistance so don’t expect a fit
to the light JV curve to provide accurate estimates of Rshunt. Alway think about what
information is contained within your data before interpreting the numbers extracted from
a fit.

� The fitting works process by: 1) Running a simulation; 2) Calculating the difference
between the numerical and experimental results; 3) tweaking the simulation parameters

https://www.youtube.com/watch?v=uEj0dB-mPTQ
https://www.youtube.com/watch?v=WY_grICDP4Y
https://www.youtube.com/watch?v=61umU4hrsqk&t=58s


15.2. THE MAIN FITTING WINDOW

; 4) rerunning the simulation and seeing if the difference between the experiment and
simulation has reduced; 5) If the error has reduced the change of parameter is accepted
and the process repeated with a different parameter. This process continues hundreds or
thousands of times until an acceptable fit has been achieved. Therefore to do a fit the
model must be run thousands of times, this means that for a fit to arrive at an answer
quickly, the individual simulation when run alone must be fast. So for example if your
simulation has 1000 mesh points, when fitting try reducing this to 10. Or if you have 1000
time steps try reducing this to 100. Every speed up in the base simulation will result in
a speed up in the fitting process.

� Writing files to disk is the slowest part of any computational process. Even modern SSDs
are about 30 times slower than main memory for example the maximum write speed to
an SSD is 456 MB/s where as the bandwidth of a PC3-12800 memory module is 12,800
MB/s. When you save your files on USB drives, network storage drives, or even worse
the internet aka OneDrive or Dropbox, read write speeds again drop massively. Therefore
if you want your simulation to run fast save it on a local hard disk which is ideally and
SSD and not a mechanical drive and not being mirrored over the network.

� As stated above writing files to disk is slow, therefore try to minimize the number of
files your simulation kicks out. Turn off things such as snapshots, optical output and the
dynamic folder. You can check if your simulation is dumping a lot of files by opening
your simulation directory in windows explorer and counting the files. A simulation set to
write very little to disk should have about 50 files in it. If your simulation directory has
hundreds of files in it then you need to find out why.

� Although you can fit with the GUI, it can be slow. I personally tend to set up fits in the
GUI but run them from the command line. There is a section on how to do this below.

� Fitting writes quite a lot of files to disk. Virus killers can slow down the fitting significantly
as they scan all the data files before they are written to disk.

15.2 The main fitting window

An example of how to fit the model to experimental data is included in the demo simulations
provided with OghmaNano. This can be found under ”Fitting and parameter extraction” (see
??). If you open this simulation you will be presented with

Figure 15.1: a) The example fitting simulation can be found in the ”Fitting and parameter
extraction” demo. b) Once opened it will look like the window on the right.



CHAPTER 15. FITTING EXPERIMENTAL DATA

From the file ribbon then click on the ”Fit to experiment icon”. This will bring up the
fitting window (see figure 15.2). The icons in the ribbon of this window perform the following
tasks:

� New experiment: Currently the window is only displaying one set of experimental data
in this case a light JV curve. Using the New experiment button one can add other data
sets such as a dark JV curve to the fit. The more sets of data you fit against the more
accurate your extracted parameters will be but the harder the fit will be to perform and
the slower it will run.

� Delete experiment: This will remove a data set from the fit.

� Clone experiment: This will clone the current data set to a new data set.

� Rename experiment: This will rename the data set.

� Export data: This will export the fit to a zip file.

� Import data: This will import experimental data. The import wizard is explained else-
where.

� Configure: This is used to configure the fitting variables, this is explained in detail below.

� One iteration data: This will run the fit just once to see how close to the experimental
data it is. It is highly recommended to use this function and change the parameters by
hand to get a closish fit before running the automated fit.

� Run fit: This will run the automated fitting algorithm. It will run forever, you have to
press the button again to stop it.

� Fit this data set: This enables or disables the fitting of the data set currently being
viewed.

Figure 15.2: The main fitting window.



15.3. FIT VARIABLES

If you click the one fit button, the fit window will update and will look like ??a. You
can now see the difference between the experimental and simulated curves. The green line
represents the difference between the two curves, it is called the error function. It represents
the mathematical difference between the simulated and experimental data. If you now click
”Run fit” to start the fitting process, you should see the curves gradually start to get closer and
the error function decrease in value. Now click on the ”Fit progress” tab, this plots the error
function as a function of fit iterations. Watch as the error drops off. It should start looking
like figure ??b. This process should take about 30 seconds, if it takes longer read section 15.1
above.

Figure 15.3: a) The result of clicking the one fit button. b) The error function dropping during
a simulation.

15.3 Fit variables

In figure 15.2, there is a ”Configure” icon. If you click on this it will open the fit variable
window. This window is used to configure the fitting variables. This window has the following
tabs:

� Duplicate variables: This is used to copy one parameter to another. In this example we
are assuming the device is symmetric, so we are only fitting the electron but we are using
the ”Duplicate variables” variables tool to copy the newly fitted electron parameters on
top of the hole parameters. This enables us to vary electron mobility in the fitting process
but let the hole mobility have the same value at each step. (See figure ??).

� Fit variables: This defines the variables we will fit. The more variables you fit at the
same time the longer the fit will take. Try to minimize the number of variables you are
fitting. A good tip is to start of fitting with symmetric parameters then only move to
asymmetric parameters, once the fit becomes good. (see figure 15.5).

� Fit variables: This is used to force one parameter to be bigger than another.

� Configure minimizer: This configures how the fitting algorithm behaves.

– Stall steps: If fit error does not improve in this number of steps then the fit is
considered stalled and therefore stopped.



CHAPTER 15. FITTING EXPERIMENTAL DATA

– Disable reset at level: This will stop the fit restarting if fit error drops to below this
level.

– Fit define convergence: This is the level of error at which the fit will stop.

– Start simplex step multiplication: This defines the size of the first fitting step, a
smaller value will mean the fitting algorithm will only change the initial numbers a
bit, while a large number will change the initial numbers a lot. If you want your fit
to explore the parameter space widely set this value to be greater than 1.0. If you
want your fit to more or less stay around where your initial parameters are set this
value to be less than 1.0. A value of 2.0 is considered big, a value of 0.1 is considered
small.

– Fitting method: This can be set to Simplex (simplex downhill https://en.wikipedia.
org/wiki/Nelder%E2%80%93Mead_method) or newton. Newton is experimental and
should not be used.

– Enable snapshots during fit: By default snapshots are turned off during fitting as
they produce a lot of disk access to allow them the be dumped to disk set this on.

– Simplex reset steps: This sets after how many steps the simplex algorithm is reset.
Resetting the algorithm can push the answer away from the solution, but it can also
pop the solver out of a valley if it has become trapped and allow better convergence.

Figure 15.4: The fit variable window. This window is used to configure the fitting variables.

https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method


15.4. HOW THE FITTING PROCESS WORKS

Figure 15.5: The fit variables used to fit the data.

15.4 How the fitting process works

When you click the ”Run fit” button, OghmaNano makes a new directory inside the simulation
directory called ”sim” this is the directory in which the fitting process takes place. Inside
this directory OghmaNano will make one new directory for each data set you are trying to
fit, it will populate each directory with the sim.json (and sim.oghma) files from your main
simulation directory. At this point the sim.json files in all the directories are identical. Then
using the contents of the fit ”fit patch” (see figure 15.6) the content of each sim.json file will
be updated, this process is called patching the simulation files. This process enables you to
adjust parameters in each simulation directory to match the data set you are trying to fit. For
example you might want one data set to have optical/light/Psun set 1.0 and another to be set
to 0.0 to enable fitting of a 1 sun JV curve and a dark JV curve. After patching each directory,
the fitting process then commences. During this process fitting variables in the sim.json files
in the ”sim” directory are updated. During the fit the algorithm will often produce fits which
are worse than the current best effort, and only sometimes produce fits which are better than
the current best effort. Only when a better fit is obtained will the sim.json file be updated in
the main simulation directory and the curves in the GUI also updated.



CHAPTER 15. FITTING EXPERIMENTAL DATA

Figure 15.6: The fit patch applied to each data set.

15.5 Fitting without the GUI

The GUI is a very easy and efficient way to setup a fit. However, it takes considerable CPU
time to update the user interface as the fit runs and this therefore slows the fitting process.
Therefore if you are doing lots of fitting or fitting difficult problems, fitting without the GUI
can be faster. This section covers how to fit from the Windows command line:

1. First set up your simulation you want to fit in the usual way using the GUI. Run a single
iteration of the fit to make sure it looks right. Then close the GUI.

2. Next we need to tell Windows where it can find OghmaNano, usually it has been in-
stalled in C:\Program files x86 \OghmaNano . If you open this directory you will see
lots of files. But the two key ones are oghma.exe and oghma core.exe. The file oghma.exe
is the GUI, oghma core.exe is the core solver, these are completely independent pro-
grams. The core solver can be run without the GUI. To tell windows where these files
are we need to add C:\Program files x86 \OghmaNano to the windows path. This can
be done by following these https://docs.microsoft.com/en-us/previous-versions/

https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)


15.5. FITTING WITHOUT THE GUI

office/developer/sharepoint-2010/ee537574(v=office.14) instructions. These in-
structions are for a modern version of Windows, but on your system things may be in
slightly different places. On most versions of windows the process is more or less the
same, if you get stuck google ”adding a path to window”.

3. Click on the start menu and type ”cmd” and enter to bring up a Windows terminal.
Type:

oghma_core.exe --help

Note it is a double dash before help not a single dash.

This should bring up some help for OghmaNano. If it does them we have successfully
told windows where oghma core.exe lives. If you get an error, try step 2 again (and/or
restart your computer).

4. Now that windows knows where oghma core.exe lives, we can navigate to our simulation
directory. Use cd to navigate to the directory where your simulation you want to fit is
saved.

5. First run the command oghma core.exe to see if your simulation runs OK. If it does not
then recheck your simulation file.

6. Now run a single fit by typing:

oghma_core.exe --1fit

Inspect the results in the ”sim” directory, use your favourite plotting program to compare
the results to the experimental data. Note the experimental data is stored in fit data(0-
1).inp.

7. If everything went well with the above step, you can run a real fit by typing:

oghma_core.exe --fit

Again those are double dashes before the fit command. Ctrl+C will terminate the fit.
You can check the progress of convergence by plotting fitlog.csv.

https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)


Chapter 16

Automation and Scripting

Often a user will have set up a simulation structure to represent a real world device but will
then ask the question: What happens to my solar cell efficiency as I change the mobility of the
active layer? Or what happens to the wavelength of my laser output as I change the thickness
of the Quantum Well. To answer these type of questions one must change one or more material
parameters over a range of values and then examine the simulation results. Clearly this could
be done by hand but there are better ways to automate this process.

There are three main ways to automate OghamNano simulations:

1. The first method is using the parameter scan window, this is described below in sec-
tion 16.1. The parameter scan window allows a user to vary a parameter (or multiple
paramters) in steps using the graphical user interface. No knowledge of coding is required
for this approach. The parameter scan window is useful if one wants to quickly examine
how a parameter influences the results and the scenario you are examining is not very
complex. The scan window fits most users’s needs most of the time.

2. For more fine grained control over how the parameters are varied the next method is
to use Python scripting, this is described in section 16.3.1. Python scripting allws the
user ultimate flexibility in adjusting all simulation parameters and running simulations,
Python is widely available which makes this approach very attractive.

3. The third way is through MATLAB scripting, this is described in section 16.3.2. The
advantage of MATLAB scripting is that lots of people can code in MATLAB so makes
automating OghmaNano very accessable. The downside of using MATLAB is that it is
quite expensive and not all people have access to it. An alternative to MATLAB would
be Octave however at the time of writing it does not have a json reader/writer.

Or option 4: All the above methods rely on the same principles: The OghmaNano simulation
save file is systematic edited and the back end of the software oghma core.exe run on the
sim.oghma file to generate new results. Key to understanding how scripting works is to realize
that the sim.oghma is simply a zip file (See 13.1) with a json file (sim.json) inside it, and if one
can edit the json file (using any language you want ActionScript, C, C++, C#, Cold Fusion,
Java, Lisp, Perl, Objective-C, OCAML, PHP, Python, Ruby etc... ) the you can automate
OghmaNano.



16.1. THE PARAMETER SCAN WINDOW

16.1 The parameter scan window

Related YouTube videos:

Using the parameter scan tool in OghmaNano

The most straight forward way to systemati-
cally vary a simulation parameter is to use the
scan window. In this example we are going
to systematic change the mobility of the ac-
tive layer of a PM6:Y6 solar cell, you can find
this example in the example simulations un-
der Scripting and fitting/Scan demo (PMY:Y6
OPV). Once you have located this simulation
and opened it, you then need to bring up the
parameter scan window, this can be done by
clicking on the Parameter scan icon in the Au-
tomation ribbon (see Figure 16.1). Then make
a new scan by clicking on the new scan button
(1) (In the example simulation this has already
been done for you). Open the new scan by dou-
ble clicking on the icon representing the scan
(2), see figure 16.2. This will bring up the scan
window, see figure 16.3.

Figure 16.1: Step 1: Select the Parameter scan
tool, to bring up the parameter scan window.

Figure 16.2: Step 2: Make a new parameter
scan, then double click on it to open it.

16.1.1 Changing one material parameter

Once the scan window has opened, make a new scan line by clicking on the the plus icon (1) in
figure 16.3, then select this line so that it is highlighted (2), then click on the three dots (3) to
select which parameter you want to scan. Again if you are using the example simulation this
will already have been done for you.

Figure 16.3: Step 3: Add a ’scan line’ to the scan.

https://www.youtube.com/watch?v=cpkPht-CKeE


CHAPTER 16. AUTOMATION AND SCRIPTING

In this example we will be selecting the elec-
tron mobility of a PM6:Y6 solar cell. Do this
by navigating to epitaxy→ PM6:Y6→ Drift
diffusion→ Electron mobility y. Highlight the
parameter and then click OK. This should then
appear in the scan line. The meaning of
epitaxy→ PM6:Y6→ Drift diffusion→Electron
mobility y will now be explained below:

� epitaxy: All parameters in the .oghma file
are exposed via the parameter selection
window see 16.4. This file is a tree struc-
ture, see 13.1. The device structure is de-
fined under the heading epitaxy.

� PM6:Y6: Under epitaxy each layer of the
device is given by its name. The active
layer in this device is called PM6:Y6, if
your active layer was called Perovskite
or P3HT:PCBM you would have selected
this instead.

� Drift diffusion: All electrical parameters
are stored under the sub heading drift dif-
fusion.

Figure 16.4: Step 5: Select the parameter you
want to scan in the parameter selection win-
dow, in this case we are selecting epitaxy→
PM6:Y6→ Drift diffusion→ Electron mobility
y.

� Electron mobility y: One can define asymmetric mobilities in the z,x and y direction -
this is useful for OFET simulations. However by default the model assumes a symmetric
mobility which is the same in all directions. This value is defined by Electron mobility y.

Next enter the values of mobility which you want to scan over in this case we will be entering
1e-5 1-6 1e-7 1e-8 1e-9 (see figure 16.5 1) then click run scan (see figure 16.5 2). OghmaNano
will run one simulation on each core of your computer until all the simulations are finished.

Figure 16.5: Step 6: Enter the input values of mobility (or other values) you want to scan over
(1). Then run the simulations.

To view the simulation results click on the output tab this will bring up the simulation
outputs, see figure 16.6. You can see that a directory has been created for each variable that
we scanned over so 1e-5, 1e-6, 1e-7, 1e-8 and 1e-9. If you look inside each directory it will be an
exact copy of the base simulation directory. If you double click on the files with multi-colored
JV curves, see the red box in figure 16.6. OghmaNano will automaticity plot all the curves
from each simulation in one graph, see figure 16.7.



16.1. THE PARAMETER SCAN WINDOW

Figure 16.6: Step 7: The output tab showing the five simulation directories and the multicolored
plot files.

Figure 16.7: Step 8: The result of the mobility scan.

16.1.2 Duplicating parameters - changing the thickness of the active
layer

Very often one wants to change a parameter, then set another parameter equal to the parameter
which was changed. An example of this is one may want to change electron and hole mobilities
together when simulating a device with symmetric mobilities. This can be done using the
duplicate function of the scan window as seen in figure 16.8. In this example we tackle a
slightly more tricky problem than changing mobilities together we are going to change the
physical width of the active layer and at the same time adjust the electrical mesh to make it
match. As discussed in section 7 the width of the active layer must always match the width of
the electrical mesh. When you change the layer width by hand in the layer editor OghmaNano
updates the width of the electrical mesh for you. But when scripting the model it won’t do



CHAPTER 16. AUTOMATION AND SCRIPTING

this update for you. Therefore in the example below we are going to set the width of the active
layer by scanning over:

epitaxy→PM6:Y6→dy of the object

Then we are going to add another line under and under parameter to scan select

mesh→mesh y→segment0→len

and set it to

epitaxy→PM6:Y6→dy of the object

under the operation dropdown box. You will see the word duplicate appear under values.

If you now run the simulation ”epitaxy→PM6:Y6→dy of the object” will be changed and
”mesh→mesh y→segment0→len” will follow it.

Figure 16.8: Duplicating material paramters.

Side note: Device with multiple active layers

The sum of the active layer thickness (as defined in the layer editor) MUST equal the electrical
mesh thickness (more about the mesh in section 7). If for example one had three active layers
TiO2 (100 nm)/Perovskite (200 nm)/Spiro (100 nm) with a total width of 400 nm. The total
mesh length must be 400 nm as well. Therefore were one want to change the thickness of the
perovskite layer as in 16.8 one would have to break the electrical mesh up into three sections
and make sure you were updating the mesh segment referring to the perovskite layer alone.

16.1.3 Setting constants

Often when running a parameter scan one wants to set a constant value, this can be done using
the ”constant” option in the Operations dropdown menu. See figure 16.9

Figure 16.9: The result of the mobility scan.



16.1. THE PARAMETER SCAN WINDOW

16.1.4 The equivalent of loops

Often when scanning over a parameter range one may want to simulate so many parameters
that it is not practical to type them in. In this case OghmaNano has the equivalent of a loop.
So for example if one wanted to change a value from 100 to 400 in steps of 1, one could type

[100 400 1]

Listing 1: The equivalent of loops in OghmaNano, this is often quicker than typing parameters
in by hand.

16.1.5 Limitations of the scan window

Although the scan window is convenient in that it provides a quick way to scan simulation
parameters, it is by nature rather limited in terms of flexibility. If you want to do complex
scans were multiple parameters are changed or to programmatically collect data from each
simulation then you can use the or matlab interfaces to OghmaNano. These are described in
the latter sections.



CHAPTER 16. AUTOMATION AND SCRIPTING

16.2 Multiparameter device optimizer

Related YouTube videos:

Optimizing the layer structure of a Perovskite solar cell

Optimizing an OPV device for maximum photon harvesting.

Searching for the optimum layer structure in an organic solar cell.

Very often when optimizing a device an engineer or scientists will be want to know what
the optimum structure of a device is. For example a perovskite solar cell is made up of multiple
layers, but what is the optimum thickness of each layer? If the perovskite layer is made really
thick then lots of light will be absorbed but the down side of this is that it will take longer for
charge carriers to escape the device so recombination will be high. Conversely if the layer is
made really thin very few carriers will have a chance to recombine as they will not spend long
in the device but the downside is that not many photons will be absorbed in the first place as
the layer is thin. If one then also considers that light will reflect multiple times of interfaces
in the device setting up standing wave pattens, this will further complicate the optimization
problem as one will need to optimize not only the thickness of the perovskite layer but also
the thicknesses of all other layers at the same time. To solve this multi-parameter optimization
problem one can use the Fast optimizer within the scan window.

16.2.1 Using the multi parameter optimizer

In the new simulation window under the sub-topic Scripting and fitting there are several ex-
amples of multi-parameter optimizers:

� Electrical layer optimizer: This will vary the layer thickness of two active layers of an
organic solar cell simulation and plot the PEC/FF/Voc as a function of these layer thick-
nesses.

� Optical layer optimizer (perovskite): This will vary the thickness of two layers in a per-
ovskite solar cell and plot the current generated by each layer within the device.

� Optical layer optimizer (OPV): This will vary the thickness of two layers in a perovskite
solar cell and plot the current generated by each layer within the device.

In this text we will be using the Optical layer optimizer (perovskite), if you open this
simulation and navigate to the scan window, you will see a scan already set up called optimizer.
If you open it you will get a window shown in figure 16.10. This scan window looks just like
the scan windows described in the previous section, however the key difference is that the Fast
optimizer button is depressed. When this button is depressed scan results are not written to
disk, instead the key simulation parameters are tabulated and saved to disk at the end of the
simulation. Notice that in this example we are varying the thickness (dy) of the Perovskite
layer between 300nm and 500 nm in steps of 10 nm and the thickness (dy) TiO2 layer from 100
nm to 300 nm also in steps of 10 nm. Try running the simulation, the using windows explorer

https://www.youtube.com/watch?v=L5o0ogp67vE
https://www.youtube.com/watch?v=sBhCg9lWjZ8 
https://www.youtube.com/watch?v=60RVozhJqFY 


16.2. MULTIPARAMETER DEVICE OPTIMIZER

Figure 16.10: The scan window with the optimizer button depressed ready to run a device layer
optimization.

navigate to your simulation directory, then open the folder called optimize and in there you
will find a csv file called optimizer output.csv. If you open this with Excel or LibreOffice, it
will look like figure 16.11.

If you examine figure 16.11 carefully you can see the first two columns are labelled epi-
taxy.layer2.dy and epitaxy.layer1.dy . These are the layer thicknesses we decided to change in
the scan window. For every subsequent layer in the device there are two columns, labelled lay-
erX/light frac photon generation and layerX/J. These refer to the fraction of the light absorbed
with in the layer and the maximum current this layer would produce if all the light absorbed
within the layer were turned into current. Clearly if light is absorbed within the active layer
it has a good chance of being turned into current, however if light is absorbed within the back
metallic contact then there is little chance of that light being turned into electrical current.
If you use the sorting tools included within Excel/LibreOffice you can figure out which device
structures produce the most current.



CHAPTER 16. AUTOMATION AND SCRIPTING

Figure 16.11: The file your simulation directory/optimizer/optimizer output.csv
opened in LibreOffice (You can use Excel).



16.3. PYTHON/MATLAB SCRIPTING OF OGHMANANO

16.3 Python/MATLAB scripting of OghmaNano

Scripting offers a more powerful way to interact with gvpdm. Rather than using the graphical
user interface, you can use your favourite programming language to interact with OghmaNano.
This gives you the option to drive simulations in a far more powerful way than can be done
using the graphical interface alone. Below I give examples of using MATLAB and python to
drive OghmaNano, but you can use any language you want which has a json reader/writer.
Pearl and Java are two languages which spring to mind.

Before you begin scripting OghmaNano you need to tell windows where OghmaNano is
installed, the default OghmaNano will be installed to C:\Program files x86 \OghmaNano, in
there you will see in this directory there are two windows executables, one called oghma.exe,
this is the graphical user interface, and a second .exe, called oghma core.exe. You can run
oghma core.exe from the command line without oghma.exe. You simply need to navigate to
a directory containing a sim.oghma folder and call oghma core.exe, this can be done from the
windows command line, matlab, python or any other scripting language. However, before you
can do this on windows, you need to add C:\Program files x86 \OghmaNano to your windows
path so that windows knows where OghmaNano is installed. An example of how to do this
on a modern version of windows is given in the link https://docs.microsoft.com/en-us/

previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)

Every new version of windows seems to move the configuration options around, so you may
have to find instructions for your version of windows.

16.3.1 Python scripting

Related YouTube videos:

Python scripting perovskite solar cell simulation

There are two ways to interact with .oghmafiles via python, using native python commands
or by using the OghmaNanoclass structures, examples of both are given below.

The native python way

As described in section 13.1, .oghmafiles are simply json files zipped up in an archive. If you
extract the sim.json file form the sim.oghmafile you can use Python’s json reading/writing code
to edit the .json config file directly, this is a quick and dirty approach which will work. You
can then use the os.system call to run oghma core to execute OghmaNano.

For example were one to want to change the mobility of the 1st device layer to 1.0 and then
run a simulation you would use the code listed in listing 2.

If the simulation in sim.json is setup to run a JV curve, then a file called sim data.dat will
be written to the simulation directory containing paramters such as PCE, fill factor, Jsc and
Voc. This again is a raw json file, to read this file in using python and write out the value of
Voc to a second file use the code given in listing 3.

Using OghmaNano’s built in classes for reading and writing json

OghmaNanohas a set of classes that can read in OghmaNanofiles and write them to disk.
The difference between using python’s native commands and the gpvmd classes is that, Ogh-
maNanowill convert the json save files to a hierarchical tree of python classes rather than leaving
them as raw json. So for example using Python’s native json interpreters one would write:

https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)
https://docs.microsoft.com/en-us/previous-versions/office/developer/sharepoint-2010/ee537574(v=office.14)
https://www.youtube.com/watch?v=vyeAzxBZjMg


CHAPTER 16. AUTOMATION AND SCRIPTING

import json

import os

import sys

f=open('sim.json') #open the sim.json file

lines=f.readlines()

f.close()

lines="".join(lines) #convert the text to a python json object

data = json.loads(lines)

#Edit a value (use firefox as a json viewer

# to help you figure out which value to edit)

# this time we are editing the mobility of layer 1

data['epitaxy']['layer1']['shape_dos']['mue_y']=1.0

#convert the json object back to a string

jstr = json.dumps(data, sort_keys=False, indent='\t')

#write it back to disk

f=open('sim.json',"w")

f.write(jstr)

f.close()

#run the simulation using oghma_core

os.system("oghma_core.exe")

Listing 2: Manipulating a sim.json file with python and running a OghmaNanosimulation.

f=open('sim_info.dat')

lines=f.readlines()

f.close()

lines="".join(lines)

data = json.loads(lines)

f=open('out.dat',"a")

f.write(str(data["Voc"])+"\n");

f.close()

Listing 3: Reading in a sim data.dat file using Python’s native json reader.

data['epitaxy']['layer1']['shape_dos']['mue_y']=1.0

Listing 4: Reading in a sim data.dat file using Python’s native json reader.



16.3. PYTHON/MATLAB SCRIPTING OF OGHMANANO

data.epitaxy.layer[1].shape_dos.mue_y=1.0

Listing 5: Reading in a sim data.dat file using Python’s native json reader.

#!/usr/bin/env python3

import json

import os

import sys

sys.path.append('c:\Program files x86\\simname\modules')

from json_root import json_root

data=json_root()

data.load("sim.json")

data.epitaxy.layer[1].shape_dos.mue_y=1.0

data.save()

os.system("coreexename.exe")

Listing 6: Editing sim.json files using OghmaNano’s built in classes.

but using the OghmaNanointerpreter one would write
The OghmaNanoclass tree also has embedded functions for searching for objects and alike

some of which are described below in listing 6.

Running OghmaNanoacross multiple cores

The scan window by default uses OghmaNano’s built in job scheduler so that if you want to
scan across 10 parameters and have a CPU with multiple cores, the jobs will be spread across
all cores. This increases the overall speed of the simulations. You can access this API using
the OghmaNano api class, an example of how to do this is given in listing 7.



CHAPTER 16. AUTOMATION AND SCRIPTING

#!/usr/bin/env python3

import os

import sys

sys.path.append('c:\Program files x86\ \simname \ modules')

from model_api import model_api

#initialize the API

api=model_api(verbose=False)

#Use the name of the current script to determine the directory name to make

script_name=os.path.basename(__file__).split(".")[0]

#define the name of the simulation dir

scan_dir=os.path.join(os.getcwd(),script_name)

#make the simulation dir

api.mkdir(scan_dir) #make a new scandir

#tell the API where we are going to run the simulation

api.server.server_base_init(scan_dir)

#Loop over electron and hole mobilities.

for mue in [ 1e-5, 1e-6, 1e-7, 1e-8]:

for muh in [ 1e-5, 1e-6, 1e-7, 1e-8 ]:

#define the sub sim path

sim_path=os.path.join(scan_dir,"{:.2e}".format(mue),"{:.2e}".format(muh))

#make the directory

api.mkdir(sim_path)

#clone the current sim dir to the new dir

api.clone(sim_path,os.getcwd())

#make edit the newly generated sim.json file

data=json_root()

data.load(os.path.join(sim_path,"sim.json"))

data.epitaxy.layer[1].shape_dos.mue_y=mue

data.epitaxy.layer[1].shape_dos.muh_y=muh

data.save()

#Add the path to the job list

api.add_job(path=sim_path)

#run all the jobs over multiple CPUs

api.server.simple_run()

#Generate GNUPLOT compatible files for plotting the results together.

api.build_multiplot(scan_dir,gnuplot=True])

Listing 7: Running jobs across multiple CPUs using python



16.3. PYTHON/MATLAB SCRIPTING OF OGHMANANO

16.3.2 MATLAB scripting

As described in section 13.1 OghmaNano simulations are stored in .json files zipped up in-
side a zip archive. Matlab has both a zip decompressor and a json decoder. Therefore it
is straight forward to edit and read and edit .oghma files in MATLAB. You can then use
MATLAB to perform quite complex parameter scans. The example script below in listing
8 demonstrates how to run multiple simulations with mobilities ranging from 1e-7 to 1e-
5 m2V −1s−1). The script starts off by unzipping the sim.json file, if you already have ex-
tracted your sim.json file from the sim.oghma file you don’t need these lines. The code then
reads in sim.json using the MATLAB json decoder jsondecode. A new directory is made
which corresponds to the mobility value, the sim.oghma file copied into that directory. Then
json data.epitaxy.layer0.shape dos.muey is set to the desired value of mobility and the sim-
ulation saved using jsonencode and fopen, fprintf, fclose. The system call is then used to
run oghma core.exe to perform the simulation. Out put parameters such as Jsc are stored in
sim data.dat again in json format, see section 4.1.4, although this is not done in this simple
script.



CHAPTER 16. AUTOMATION AND SCRIPTING

if exist("sim.oghma", 'file')==false

sprintf("No sim.oghma file found"); %Check if we have a sim.oghma file

end

if exist("sim.json", 'file')==false

unzip("sim.oghma") %if we don't have a sim.json file

%try to extract it

end

A = fileread("sim.json"); %Read the json file.

json_data=jsondecode(A); %Decode the json file

mobility=1e-7 %Start mobility

origonal_path=pwd %working with the current dir

base_dir="mobility_scan" %output directory name

while(mobility<1e-5)

dir_name=sprintf("%e",mobility);

full_path=fullfile(origonal_path,base_dir,dir_name) %join paths

mkdir(full_path) %make the dir

cd(full_path) %cd to the dir

%Update the json mobility

json_data.epitaxy.layer0.shape_dos.mue_y=mobility %Change mobility

%of layer0

copyfile(fullfile(origonal_path,"sim.oghma"),\\

fullfile(origonal_path,base_dir,dir_name,"sim.oghma"))

%now write the json file back to disk

out=jsonencode(json_data);

json_data

fid = fopen("sim.json",'w');

fprintf(fid, '%s', out);

fclose(fid);

%run oghma - This won't work if you have not added the oghma

%install directory to your windows paths

system("oghma_core.exe")

%Multiply mobility by 10

mobility=mobility*10;

end

%Move back to the original dir

cd(origonal_path)

Listing 8: An example of how to call OghmaNano from MATLAB



Chapter 17

Output files

In general writing to disk is slow on even the most modern of computers with an SSD. The
seek speed of mechanical disks has increased little of their history. Thus often writing the
output data to the hard disk is the most time consuming part of any simulation. By default
OghmaNanowrites all output files to disk this is so the new user can get a feel for what output
OghmaNanocan provide. However to speed up simulations you should limit how much data is
written to disk. The simulation editor windows (steady state,time domain etc..) offer options
to decide how much data you want to dump to disk. This is shown in figure 17.1

[H]

Figure 17.1: Selecting which output files are written to disk.

The option ”Output verbosity to disk” can be toggled between ”None” and ”write everything
to disk”. When ”None” is selected nothing is outputted to disk at all - even simulation results
are not written. When ”write everything to disk” is selected the simulation dumps everything
to disk, so JV curves and all internal variables of the solver are written to disk so that the user
can examine how carrier densities, fermi-levels, potentials etc.. change during the course of
the simulation (see section 17.1). The second option below ”Output verbosity to disk” called
”dump trap distribution” will write out the distribution of traps in energy and position space.



CHAPTER 17. OUTPUT FILES

See section 17.2.

17.1 Snapshots directory - dir

The snapshots directory (see figure 17.2) allows the user to plot all internal solver parameters.
For example figure 17.3 where the snapshots tool is being used to plot the conduction band,
valance band and quasi Fermi-levels as a function of voltage. The slider can be used to view
different voltages.

Figure 17.2: The file viewer showing the snapshots and trap map directory



17.2. TRAP MAP DIRECTORY - DIR

Figure 17.3: Using the snapshots tool to view the conduction band, valance band and quasi
Fermi-levels

17.2 Trap map directory - dir

The trap map directory contains the distribution and density of carriers in the traps as a
function of position and energetic depth. An example is given in figure 17.4



CHAPTER 17. OUTPUT FILES

Figure 17.4: Plotting the position and energy dependence of carriers using the trap map tool

17.3 Optical snapshots - dir

Contains results of the optical simulations.

17.4 Cache - dir

Getting a computer to do math is on the whole a slow thing to do. It’s much faster to
precalculate results then store the answers in a look up table. This can speed up calculations
significantly. The cahce dir stores the results of such precalculations, you can delete if you want
it OghmaNanowill just remake it when it runs.

17.5 Equilibrium directory

Before the solver starts any simulation it solves the device equations in the dark with 0V applied
bias. The result of this calculation are placed in this directory. The practical reason for doing
this is that Newton’s method only works if you give it a reasonable starting guess for any given
problem. Thus to start the solver, we guess the carrier densities at 0V in the dark, we then
use Newton’s method to calculate the exact carrier density profiles at 0V in the dark (results
are stored in the equilibrium directory), then from this point we can work our way to other
solutions say at +1V in the light.[14]



17.6. FILE FORMATS

17.5.1 Optical simulation

JSON token Meaning Units Ref
Jphoto Photo current density Am−2

Iphoto Photo current A

17.6 File formats

Almost all input and output files associated with OghmaNanoare human readable, meaning
that they are straight up text files. All output files can be directly plotted in gnuplot/excel as
can the input files. Output files are currently called .dat, but they are simply text files. All
configuration files are in json format so can be edit directly or by using the python json library.

17.6.1 .dat files

This type of file is a straight text file which can be imported into excel or any other plotting
program. It contains two columns of data x and y. There is also a preamble in the file containing
information such as units etc.. OghmaNanois moving from .dat files to .csv files.

17.6.2 .csv files

This is a straight csv file as you would expect which can be imported into any text editor. The
first line of the file is a json string containing information such as units etc. You can ignore
this. The second line of the file describes the x/y data in a human readable form then the rest
of the file contains the data.

17.6.3 Binary .csv files - files which are not human readable

In some cases it is not practical to dump text files. Examples are when dealing with 3D
structures. In this case OghmaNanowill dump the same json header as used in the csv file but
then dump a series of C floats representing the data.



Chapter 18

Troubleshooting

18.1 Windows gives warms me the software is unsigned

18.2 Why don’t I get a 3D view of the device

If your simulation window looks like figure 18.2 and not like figure 18.1. It means either you do
not have any 3D acceleration hardware on your computer, or you do not have the drivers for it
installed. If you have an ATI/Nvidia/Intel graphics card check that the drivers are installed.
Currently, not having working 3D hardware will not affect your ability to perform simulations.
This is not a OghmaNanobug it’s a driver/hardware issue on your computer.

Figure 18.1: OghmaNanowith working 3D acceleration hardware.



18.2. WHY DON’T I GET A 3D VIEW OF THE DEVICE

Figure 18.2: OghmaNanowith no 3D acceleration hardware.



Chapter 19

FAQ

19.1 Section

19.1.1 Should I trust the results of OghmaNano?

Yes! The model it’s self has been verified against experiment [there are over 20 publications
doing this, in steady state, time domain (us-fs time scales), and fx-domain]. The basic drift-
diffusion solver was cross checked and compared against other drift diffusion models, and the
accuracy compared down to 6-9 dp. While the optical model has been compared to analytical
solutions of Maxwell’s equations. The SRH model has also been compared against analytical
models. If the answers you are getting out of OghmaNano are odd, then I would suggest to
take a look at the input parameters. If your efficienceis are high, try increasing the number
of trap states, the recombination cross sections or reducing the e/h mobilites. Finally, I would
also recommend always running the latest version, and keeping an eye on the twitter stream
for bug announcements.

19.1.2 Can I use the model to simulate my exotic* material sys-
tem/contacts?

The short answer is yes. The model is an effective medium model, meaning that it does not
simulate the details of the medium, rather it approximates the medium with a set of electrical
parameters. For example, when simulating an organic solar cell, it does not simulate every
detail of the BHJ, rather it just assumes an effective mobility, density of states, recombination
cross sections, trapping cross sections and so on... So if you can find electrical parameters to
aproximate your material system (or guess them), there is nothing stopping you using Ogh-
maNano to simulate any exotic device/material. The same goes for the contacts, the model
simulates the contacts simply as a charge density. So if you have fancy graphene contacts which
inject lots of charge, use a high majority carrier density on the contacts. Where as if you have
some dirty old ITO contacts may be drop the majority carrier density a bit.



19.2. EXCITED STATES

1
9
.2

E
x
ci

te
d

st
a
te

s

T
h
is

is
a

n
ew

fe
au

tr
e

an
d

is
n
ot

ye
t

fi
n
is

h
ed

.
I

am
w

ri
ti

n
g

th
e

eq
u
at

io
n
s

as
I

im
p
lm

en
t

th
em

in
th

e
so

lv
er

.

d
N

S

d
t

=
1 4
R

f
r
ee

+
1 4
κ
T
T
N

2 T
−

(κ
S

+
κ
I
S
C

)N
s
−

(7 4
κ
S
S
N

S
−
κ
S
T
N

T
)N

S
(1

9.
1)

d
N

t

d
t

=
3 4
R

f
r
ee

+
κ
I
S
C
N

S
+

3 4
κ
S
S
N

2 S
(1

9.
2)

d
N

S
D

d
t

=
κ
F
R
E
T

N
D
O
P

(N
D
O
P
−
N

S
D
−
N

T
D

)N
s

+
1 4
κ
T
T
D
N

2 T
D
−

(7 4
κ
S
S
D
N

S
D

+
κ
S
T
D
N

T
D

)N
S
D

(1
9.

3)



Chapter 20

Legal

20.1 License

OghmaNanocomprises of three independent components, OghmaNanogui, OghmaNanocore and
OghmaNanodata. In general everything is under the MIT license except the Python GUI which
I have released under GPL v2.0. Details can be found here.

20.2 Copyright of the manual

This manual is released under CC-BY license.

https://github.com/roderickmackenzie/gpvdm/blob/main/LICENSE.md


20.3. DATA PRIVACY STATEMENT

20.3 Data privacy statement

In some versions of OghmaNanoit will ask you to register before using it. In these versions it asks
for your name, title, company that you work for and what you intend on using OghmaNanofor.
This data is then transmitted to the OghmaNanoserver where it is securely stored. The reason
I ask for this information is to be able generate accurate usage information. Having accurate
information helps when requesting grants from funding bodies. It’s much easier to ask a funding
body for money if you can prove you actually have users and your software is a benefit to society.
Periodicity OghmaNanowill also contact the OghmaNanoserver to see if there are any software
updates. By using OghmaNanoyou agree for the above to happen.



Bibliography

[1] Z. Liu, Z. Deng, S. J. Davis, C. Giron, and P. Ciais. Nature Reviews Earth & Environment,
Mar 2022.

[2] S. Manabe and R. T. Wetherald. Journal of Atmospheric Sciences, 1967, 24 3 241 – 259.

[3] R. C. MacKenzie, C. G. Shuttle, M. L. Chabinyc, and J. Nelson. Advanced Energy Mate-
rials, 2012, 2 6 662–669.

[4] L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue,
et al. Nature Materials, 2022, 21 6 656–663.

[5] C. Wopke, C. Gohler, M. Saladina, X. Du, L. Nian, C. Greve, C. Zhu, K. M. Yallum, Y. J.
Hofstetter, D. Becker-Koch, et al. NATURE COMMUNICATIONS, 2022, 13 1 .

[6] J. Piprek. Semiconductor optoelectronic devices: introduction to physics and simulation.
Elsevier, 2013.

[7] B. C. O’Regan, J. R. Durrant, P. M. Sommeling, and N. J. Bakker. The Journal of Physical
Chemistry C, 2007, 111 37 14001–14010.

[8] P. Kaienburg. 2019.

[9] P. Kaienburg, U. Rau, and T. Kirchartz. Phys. Rev. Applied, Aug 2016, 6 024001.

[10] R. C. MacKenzie, C. G. Shuttle, G. F. Dibb, N. Treat, E. von Hauff, M. J. Robb, C. J.
Hawker, M. L. Chabinyc, and J. Nelson. The Journal of Physical Chemistry C, 2013, 117
24 12407–12414.

[11] P. Calado, A. M. Telford, D. Bryant, X. Li, J. Nelson, B. C. O’Regan, and P. R. Barnes.
Nature communications, 2016, 7 1 1–10.

[12] E. M. Azoff. Solid State Electronics, September 1987, 30 9 913–917.

[13] S. Solak, S. Shishegaran, A. C. Hübler, and R. C. MacKenzie. Solar RRL, 2021, 5 12
2100787.

[14] T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi. Journal of Physics: Condensed Matter, 2013,
25 21 215301.



BIBLIOGRAPHY

Use the power of device simulation to understand your experimental data from thin film
devices such as Organic Solar cells, sensors, OFET, OLEDs, Perovskite solar cells, and many
more. Unlike may other models OghmaNanois purpose built from the ground up for simulating
thin film devices made from disordered materials. Downloaded more than 25,000 times with over
200 papers published using the model, OghmaNanohas become one of they key device modelling
tools used by the scientific community developing the next generation of opto-electronic devices.

This book written by the author of OghmaNanoexplains will take you from a standing start
to being able to confidently simulate your own devices. Learn how to simulate, Organic solar
cells, Organic Field Effect Transistors, Perovskite solar cells, Organic LEDs, Large area printed
devices and many more..


	Introduction
	What is OghmaNano?
	Why OghmaNano?
	About this book/manual
	What is the history of OghmaNano?
	What is the roadmap for OghmaNano?
	Using OghmaNano in industrial/academic work
	Bugs

	Installing OghmaNano
	Windows (if you have admin rights)
	Windows (No admin rights)

	Getting started
	Simulating a JV curve of a simple solar cell
	Making your first simulation
	The output from your first simulation
	Editing device layers
	How do solar cells absorb light?
	Light inside solar cells
	Parasitic elements
	Solar cells in the dark
	The contact editor
	Electrical parameters


	Simulation modes and simulation editors
	JV editor (Steady state simulation editor)
	Inputs
	Outputs
	sim_info.dat
	Steady state electrical simulation

	Time domain editor
	Frequency domain editor
	Overview
	Inputs
	Outputs

	Suns-Voc editor
	Outputs

	Suns-Jsc editor
	Outputs

	Quantum efficiency editor
	Outputs

	Scanning probe microscopy editor
	Electrical equilibrium editor
	Steady state photoluminencense editor
	Charge extraction editor
	Outputs

	Capacitance voltage editor
	Outputs


	2D Simulations - OFETs
	The anatomy of a 2D simulation
	Electrical parameters
	Running a 2D simulation
	Meshing in 2D
	Solving the drift diffusion equations over the entire device


	2D simulation of bulk-heterojunctions
	Meshing
	Meshing
	Editing the electrical mesh/layers
	Should I be simulating in 1D, 2D or 3D?

	Theory of drift diffusion modelling
	Outline
	Electrostatic potential
	Free charge carrier statistics
	Carrier trapping and Shockley-Read-Hall recombination
	Equilibrium Shockley-Read-Hall recombination
	Non-equilibrium carrier trapping and recombination using Shockley-Read-Hall trap states
	Free-to-free carrier recombination
	Auger recombination

	Charge carrier transport
	Perovskite mobile ion solver
	Semiconductor interfaces
	Tunnelling through heterojunctions
	Doping on the interface

	Configuring the electrical solver
	Solver stability
	Simulating disordered devices without traps

	Calculating the built in potential
	Average free carrier mobility

	
	Lattice thermal model
	Energy balance - hydrodynamic transport model


	Optical models
	
	Lattice thermal model
	Energy balance - hydrodynamic transport model
	Ray tracing model


	Simple circuit simulations
	JV, IS, CV and other simulation modes
	Using the fitting/scan tools with circuit models


	Large area device simulation
	Designing contacts for large area devices
	Simulating large area solar cells

	Modelling excitons/geminate recombination - organics only
	Why you should not model excitons
	Modelling excitons
	Modeling excitions in a device
	Modeling excitions in a unit cell

	The oghma file format
	the .oghma simulation file format
	Qwerks of the OghmaNano json format
	Encoding
	Forwards/backwards compatability of the file format

	Databases
	Materials database
	Adding new materials - the hard way
	Adding new materials - the easy way
	Emission database
	Shape database
	The shape file format

	Filters database
	Backups of simulations

	Fitting experimental data
	Key tips and tricks
	The main fitting window
	Fit variables
	How the fitting process works
	Fitting without the GUI

	Automation and Scripting
	The parameter scan window
	Changing one material parameter
	Duplicating parameters - changing the thickness of the active layer
	Setting constants
	The equivalent of loops
	Limitations of the scan window

	Multiparameter device optimizer
	Using the multi parameter optimizer

	Python/MATLAB scripting of OghmaNano
	Python scripting
	MATLAB scripting


	Output files
	Snapshots directory - dir
	Trap_map directory - dir
	Optical snapshots - dir
	Cache - dir
	Equilibrium directory
	Optical simulation

	File formats
	.dat files
	.csv files
	Binary .csv files - files which are not human readable


	Troubleshooting
	Windows gives warms me the software is unsigned
	Why don't I get a 3D view of the device

	FAQ
	Section
	Should I trust the results of OghmaNano?
	Can I use the model to simulate my exotic* material system/contacts?

	Excited states

	Legal
	License
	Copyright of the manual
	Data privacy statement


