Excited states
Excited States in OLEDs are fully working in the solver. However, this feature has not yet been enabled in the public release because the related paper is still under review and has not yet been published.
Governing equations
(1a) Electron continuity
\[ \frac{\partial n}{\partial t} = \frac{1}{q}\nabla \cdot \mathbf{J}_n \;-\; R_{\mathrm{free}} \;+\; G_n, \qquad \mathbf{J}_n = -\,q\mu_n n \nabla\phi \;+\; q D_n \nabla n \]
(1b) Hole continuity
\[ \frac{\partial p}{\partial t} = -\,\frac{1}{q}\nabla \cdot \mathbf{J}_p \;-\; R_{\mathrm{free}} \;+\; G_p, \qquad \mathbf{J}_p = \;q\mu_p p \nabla\phi \;-\; q D_p \nabla p \]
(1c) Free-to-free (bimolecular) recombination
\[ R_{\mathrm{free}} = k_r\,(np - n_0 p_0) \quad\text{with}\quad D_{n,p} = \frac{k_B T}{q}\,\mu_{n,p} \]
(2)
\[ \frac{dN_S}{dt} = \frac{1}{4}\gamma N_P^{2} + \frac{1}{4}\kappa_{TT}N_T^{2} - (\kappa_{\mathrm{FRET}}P_{OD} + \kappa_S + \kappa_{ISC})N_S - \Big(\tfrac{7}{4}\kappa_{SS}N_S + \kappa_{SP}N_P + \kappa_{ST}N_T\Big)N_S \]
(3)
\[ \frac{dN_T}{dt} = \frac{3}{4}\gamma N_P^{2} + \kappa_{ISC}N_S + \frac{3}{4}\kappa_{SS}N_S^{2} - (\kappa_{DEXT}P_{OD} + \kappa_T + \kappa_{TP}N_P)N_T - \frac{5}{4}\kappa_{TT}N_T^{2} \]
(4)
\[ \frac{dN_{SD}}{dt} = \kappa_{\mathrm{FRET}}P_{OD}N_S + \frac{1}{4}\kappa_{TTD}N_{TD}^{2} - (\kappa_{SD} + \kappa_{ISCD})N_{SD} - \Big(\tfrac{7}{4}\kappa_{SSD}N_{SD} + \kappa_{SPD}N_P + \kappa_{STD}N_{TD}\Big)N_{SD} - \xi P_{HO}\big(N_{SD} - WN_{OD}\big) \]
(5)
\[ \frac{dN_{TD}}{dt} = \kappa_{DEXT}P_{OD}N_T + \kappa_{ISCD}N_{SD} + \frac{3}{4}\kappa_{SSD}N_{SD}^{2} - \kappa_{TD}N_{TD} - \frac{5}{4}\kappa_{TTD}N_{TD}^{2} - \kappa_{TPD}N_{TD}N_P \]
(6)
\[ \frac{dP_{HO}}{dt} = \beta_{sp}\kappa_{SD}N_{SD} + \big(\Gamma \xi (N_{SD} - WN_{OD}) - \kappa_{CAV}\big) P_{HO} \]
(7)
\[ N_{OD} = N_{DOP} - N_{SD} - N_{TD} \]